Evaluation of Relational Operations

CMPSCI 645
Mar 9th and 11th, 2010
Relational Operations

- We will consider how to implement:
 - **Selection** (σ) Selects a subset of rows from relation.
 - **Projection** (π) Deletes unwanted columns from relation.
 - **Join** (\bowtie) Allows us to combine two relations.
 - **Set-difference** (\setminus) Tuples in reln. 1, but not in reln. 2.
 - **Union** (\cup) Tuples in reln. 1 and in reln. 2.
 - **Aggregation** (SUM, MIN, etc.) and GROUP BY
 - **Order By** Returns tuples in specified order.

After we cover the operations, we will discuss how to optimize queries formed by composing them.
Outline

- Sorting
- Evaluation of joins
- Evaluation of other operations
Why Sort?

- A classic problem in computer science!
- Important utility in DBMS:
 - Data requested in sorted order (e.g., ORDER BY)
 - e.g., find students in increasing gpa order
 - Sorting useful for eliminating duplicates (e.g., SELECT DISTINCT)
 - Sort-merge join algorithm involves sorting.
 - Sorting is first step in bulk loading B+ tree index.
- **Problem**: sort 1Gb of data with 1Mb of RAM.
2-Way Sort: Requires 3 Buffers

- **Pass 1**: Read a page, sort it, write it.
 - only one buffer page is used
- **Pass 2, 3, …, etc.**:
 - three buffer pages used.

![Diagram](image-url)
Two-Way External Merge Sort

- Each pass we read + write each page in file: $2N$.
- N pages in the file => the number of passes $= \lceil \log_2 N \rceil + 1$
- So total cost is: $2N \left(\lceil \log_2 N \rceil + 1 \right)$

Idea: Divide and conquer: sort subfiles and merge
More than 3 buffer pages. How can we utilize them?

To sort a file with N pages using B buffer pages:
- Pass 0: use B buffer pages. Produce $\lfloor N / B \rfloor$ sorted runs of B pages each.
- Pass 2, ..., etc.: merge $B-1$ runs.
Cost of External Merge Sort

- Number of passes: \(1 + \lceil \log_{B-1} \left(\frac{N}{B} \right) \rceil\)
- Cost = \(2N \times \# \text{ of passes}\)
- E.g., with 5 buffer pages, to sort 108 page file:
 - Pass 0: \(\lceil \frac{108}{5} \rceil = 22\) sorted runs of 5 pages each (last run is only 3 pages)
 - Pass 1: \(\lceil \frac{22}{4} \rceil = 6\) sorted runs of 20 pages each (last run is only 8 pages)
 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages
Number of Passes of External Sort

<table>
<thead>
<tr>
<th>N</th>
<th>B=3</th>
<th>B=5</th>
<th>B=9</th>
<th>B=17</th>
<th>B=129</th>
<th>B=257</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,000</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10,000</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>100,000</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10,000,000</td>
<td>23</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>100,000,000</td>
<td>26</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Replacement Sort

- Produces sorted runs as long as possible.
- Pick tuple r in the current set with the smallest value that is ≥ largest value in output, e.g. 8 in the example.
- Fill the space in current set by adding tuples from input.
- Write output buffer out if full, extending the current run.
- Current run terminates if every tuple in the current set is smaller than the largest tuple in output.
- When used in Pass 0 for sorting, can write out sorted runs of size $2B$ on average.
Blocked I/O for External Merge Sort

- … longer runs often means fewer passes!
- Actually, we don’t do I/O a page at a time
- In fact, read a block of pages sequentially!
- Suggests we should make each buffer (input/output) be a block of pages.
 - But this will reduce fan-out during merge passes!
 - In practice, most files still sorted in 2-3 passes.
Double Buffering

- To reduce wait time for I/O request to complete, can *prefetch* into `shadow block`.
 - Potentially, more passes; in practice, most files *still* sorted in 2-3 passes.

Diagram:
- Disk
- Main memory buffers: B
- k-way merge

INPUT 1 → OUTPUT
INPUT 1' → OUTPUT'
INPUT 2 → OUTPUT
INPUT 2' → OUTPUT'
INPUT k → OUTPUT
INPUT k' → OUTPUT'

b
block size

B main memory buffers, k-way merge
Sorting Records!

- Sorting has become highly competitive!
 - Parallel sorting is the name of the game ...

- Datamation sort benchmark: Sort 1M records of size 100 bytes
 - in 1985: 15 minutes
 - World records: 1.18 seconds (1998 record)
 - 16 off-the-shelf PC, each with 2 Pentium processor, two hard disks, running NT4.0.

- New benchmarks proposed:
 - Minute Sort: How many can you sort in 1 minute?
 - Dollar Sort: How many can you sort for $1.00?
Using B+ Trees for Sorting

- Scenario: Table to be sorted has B+ tree index on sorting column(s).
- Idea: Can retrieve records in order by traversing leaf pages.
- Is this a good idea?
- Cases to consider:
 - B+ tree is clustered \textit{Good idea!}
 - B+ tree is not clustered \textit{Could be a very bad idea!}
Clustered B+ Tree Used for Sorting

- Cost: root to the left-most leaf, then retrieve all leaf pages (Alternative 1)

- If Alternative 2 is used? Additional cost of retrieving data records: each page fetched just once.

(always better than external sorting!)

Related Data Records
Unclustered B+ Tree Used for Sorting

- Alternative (2) for data entries; each data entry contains \(rid \) of a data record. In general, one I/O per data record!

Worse case I/O: \(pN \)

\(p \): # records per page

\(N \): # pages in file
External Sorting vs. Unclustered Index

<table>
<thead>
<tr>
<th>N</th>
<th>Sorting</th>
<th>p=1</th>
<th>p=10</th>
<th>p=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>200</td>
<td>100</td>
<td>1,000</td>
<td>10,000</td>
</tr>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>1,000</td>
<td>10,000</td>
<td>100,000</td>
</tr>
<tr>
<td>10,000</td>
<td>40,000</td>
<td>10,000</td>
<td>100,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>100,000</td>
<td>600,000</td>
<td>100,000</td>
<td>1,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>1,000,000</td>
<td>8,000,000</td>
<td>1,000,000</td>
<td>10,000,000</td>
<td>100,000,000</td>
</tr>
<tr>
<td>10,000,000</td>
<td>80,000,000</td>
<td>10,000,000</td>
<td>100,000,000</td>
<td>1,000,000,000</td>
</tr>
</tbody>
</table>

* p: # of records per page
* B=1,000 and block size=32 for sorting
* p=100 is the more realistic value.
Summary

- External sorting is important; DBMS may dedicate part of buffer pool for sorting!
- External merge sort minimizes disk I/O cost:
 - Pass 0: Produces sorted runs of size \(B \) (# buffer pages). Later passes: merge runs.
 - # of runs merged at a time depends on \(B \), and block size.
 - Larger block size means less I/O cost per page.
 - Larger block size means smaller # runs merged.
 - In practice, # of runs rarely more than 2 or 3.
- Clustered B+ tree is good for sorting; unclustered tree is usually very bad.
Outline

- Sorting
- Evaluation of joins
- Evaluation of other operations
Some Common Techniques

- Algorithms for evaluating relational operators use some simple ideas extensively:
 - **Indexing:** Can use WHERE conditions to retrieve small set of tuples (selections, joins)
 - **Iteration:** Sometimes, faster to scan all tuples even if there is an index. (And sometimes, we can scan the data entries in an index instead of the table itself.)
 - **Partitioning:** By using sorting or hashing, we can partition the input tuples and replace an expensive operation by similar operations on smaller inputs.

Watch for these techniques as we discuss query evaluation!
Schema for Examples

Sailors \((sid: \text{integer}, \ sname: \text{string}, \ rating: \text{integer}, \ age: \text{real})\)
Reserves \((sid: \text{integer}, \ bid: \text{integer}, \ day: \text{date}, \ rname: \text{string})\)

- **Reserves:**
 - Each tuple is 40 bytes long,
 - 100 tuples per page,
 - 1000 pages.
- **Sailors:**
 - Each tuple is 50 bytes long,
 - 80 tuples per page,
 - 500 pages.
Equality Joins With One Join Column

In algebra: $R \bowtie S$. Common relational operation!
- $R \times S$ is large; $R \times S$ followed by a selection is inefficient.
- Must be carefully optimized.

Assume: M pages in R, p_R tuples per page, N pages in S, p_S tuples per page.
- In our examples, R is Reserves and S is Sailors.

We will consider more complex join conditions later.

Cost metric: # of I/Os. We will ignore output costs.
Simple Nested Loops Join

foreach tuple r in R do
 foreach tuple s in S do
 if $r_i == s_j$ then add <r, s> to result

- For each tuple in the outer relation R, we scan the entire inner relation S.
 - Cost: $M + p_R \times M \times N = 1000 + 100 \times 1000 \times 500 = 1,000 + (5 \times 10^7)$ I/Os.
 - Assuming each I/O takes 10 ms, the join will take about 140 hours!
Page-Oriented Nested Loops Join

- For each page of R, get each page of S, and write out matching pairs of tuples <r, s>, where r is in R-page and S is in S-page.
 - Cost: \(M + M \times N = 1000 + 1000 \times 500 = 501,000 \) I/Os.
 - Assuming each I/O takes 10 ms, the join will take about 1.4 hours.

- Choice of the smaller relation as the outer
 - If smaller relation (S) is outer, cost = \(500 + 500 \times 1000 = 500,500 \) I/Os.
Block Nested Loops Join

- Take the **smaller** relation, say R, as **outer**, the other as inner.
- Use one buffer for scanning the inner S, one buffer for output, and use all remaining buffers to hold "block" of outer R.
 - For each matching tuple r in R-block, s in S-page, add <r, s> to result.
 - Then read next page in S, until S is finished.
 - Then read next R-block, scan S…
Examples of Block Nested Loops

- **Cost:** Scan of outer + #outer blocks * scan of inner
 - #outer blocks = ⌈# pages of outer / block size⌉
 - Given available buffer size B, block size is at most B-2.
 - M + N * ⌈M / B-2⌉

- With Sailors (S) as outer, let block be 100 pages of S:
 - Cost of scanning S is 500 I/Os; a total of 5 blocks.
 - Per block of S, we scan Reserves; 5*1000 I/Os.
 - Total = 500 + 5 * 1000 = 5,500 I/Os.
 - (a little over 1 minute)
Index Nested Loops Join

foreach tuple r in R do
 foreach tuple s in S where r_i == s_j do
 add <r, s> to result

- If there is an index on the join column of one relation (say S), can make it the inner and exploit the index.
 - Cost: $M + ((M * p_R) * \text{cost of finding matching S tuples})$

- For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree. Cost of then finding S tuples (assuming Alt. (2) or (3) for data entries) depends on clustering.
 - Clustered index: 1 I/O (typical).
 - Unclustered: up to 1 I/O per matching S tuple.
Examples of Index Nested Loops

- Hash-index (Alt. 2) on sid of Sailors (as inner):
 - Scan Reserves: 1000 page I/Os, 100*1000 tuples.
 - For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Sailors tuple.
 - Total: 1000 + 100*1000*2.2 = 221,000 I/Os.

- Hash-index (Alt. 2) on sid of Reserves (as inner):
 - Scan Sailors: 500 page I/Os, 80*500 tuples.
 - For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples. If uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os (cluster?).
 - Total: 500 + 80*500*(2.2~3.7) = 88,500~148,500 I/Os.
Sort-Merge Join \((R \bowtie S) \)

- (1) **Sort** \(R \) and \(S \) on the join column, (2) **Merge** them (on join col.), and output result tuples.

- **Merge**: repeat until either \(R \) or \(S \) is finished
 - **Scanning**: Advance scan of \(R \) until current \(R \)-tuple \(\geq \) current \(S \) tuple, advance scan of \(S \) until current \(S \)-tuple \(\geq \) current \(R \) tuple; do this until current \(R \) tuple = current \(S \) tuple.
 - **Matching**: Now all \(R \) tuples with same value in \(R_i \) (current \(R \) group) and all \(S \) tuples with same value in \(S_j \) (current \(S \) group) match; output \(<r, s> \) for all pairs of such tuples.

- **\(R \) is scanned once; each \(S \) group is scanned once per matching \(R \) tuple.** (Multiple scans of an \(S \) group are likely to find needed pages in buffer.)
Example of Sort-Merge Join

- Cost: $M \log M + N \log N + (M+N)$
 - The cost of merging, $M+N$, could be $M*N$ (very unlikely!)
 - $M+N$ is guaranteed in foreign key join (why?)
 - As with sorting, $\log M$ and $\log N$ are small numbers, e.g., 3, 4.
- With 35, 100 or 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: 7500.

 $$(BNL\ cost: \ 2500\ (B=300),\ 5500\ (B=100),\ 15000\ (B=35))$$
Hash-Join

- **Partitioning**: Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i.

- **Probing**: Read in partition i of R, build hash table on R_i using $h2 (<> h!)$, scan partition i of S, search for matches.
Observations on Hash-Join

- **# partitions ≤ B-1**, and size of largest partition ≤ B-2 to be held in memory. Assuming uniformly sized partitions, we get:
 - $M / (B-1) < (B-2)$, i.e., B must be $> \sqrt{M}$
 - Hash-join works if the **smaller** relation satisfies above.

- If we build an in-memory hash table to speed up the matching of tuples, a little more memory is needed.

- If hash function h does not partition uniformly, one or more R partitions may not fit in memory. Can apply hash-join technique recursively to do the join of this R-partition with corresponding S-partition.
Cost of Hash-Join

- Partitioning reads+writes both relns; 2(M+N). Probing reads both relns; M+N I/Os. The total is 3(M+N).
 - In our running example, a total of 4500 I/Os using hash join, less than 1 min (compared to 140 hours w. NLJ).

- Sort-Merge Join vs. Hash Join:
 - Given a minimum amount of memory both have a cost of 3(M+N) I/Os.
 - Hash Join superior on this count if relation sizes differ greatly. Assuming M<N, what if \(\sqrt{M} < B < \sqrt{N} \)? Also, Hash Join is shown to be highly parallelizable.
 - Sort-Merge less sensitive to data skew; result is sorted.
General Join Conditions

- Equalities over several attributes (e.g., $R.sid = S.sid$ AND $R.rname = S.sname$):
 - For Index NL, build index on $<sid, sname>$ (if S is inner); or use existing indexes on sid or $sname$ and check the other join condition on the fly.
 - For Sort-Merge and Hash Join, sort/partition on combination of the two join columns.

- Inequality conditions (e.g., $R.rname < S.sname$):
 - For Index NL, need B+ tree index.
 - Range probes on inner; # matches likely to be much higher than for equality joins (clustered index is much preferred).
 - Hash Join, Sort Merge Join not applicable.
 - Block NL quite likely to be a winner here.