Database Theory: Beyond FO

CS 645
Feb 11, 2010
Coming lectures

• TODAY:
 – Limited expressiveness of FO
 – Adding recursion (Datalog)
 – Expressiveness & Complexity
Expressive Power of FO

• Let $I = \{R(x,y)\}$ represent a graph
• Query $\text{path}(x,y) =$
 - all x,y such that there is path from x to y

• Theorem: $\text{path}(x,y)$ cannot be expressed in FO.
Datalog Programs

• A Datalog program is a collection of rules.
• In a program, subgoals can be either
 1. EDB = Extensional Database = stored table.
 2. IDB = Intensional Database = computed table.

 Never both! No EDB in heads.
Non-recursive rules

Graph: \(R(x,y) \)

\[
\begin{align*}
P(x,y) & \leftarrow R(x,u), R(u,v), R(v,y) \\
A(x,y) & \leftarrow P(x,u), P(u,y)
\end{align*}
\]

Can “unfold” it into:

\[
A(x,y) \leftarrow R(x,u), R(u,v), R(v,w), R(w,m), R(m,n), R(n,y)
\]
Example: Datalog Program

- Using EDB `Sells(bar, beer, price)` and `Beers(name, manf)`, find the manufacturers of beers Joe doesn’t sell.

 \[
 \text{JoeSells}(b) \leftarrow \text{Sells}(\text{'Joes Bar', b, p}) \\
 \text{Answer}(m) \leftarrow \text{Beers}(b,m) \& \neg \text{JoeSells}(b)
 \]
Evaluating Datalog Programs

- As long as there is no recursion, we can pick an order to evaluate the IDB predicates, so that all the predicates in the body of its rules have already been evaluated.
- If an IDB predicate has more than one rule, each rule contributes tuples to its relation.
Expressive Power of Datalog

- Without recursion, Datalog expresses exactly the first order queries
 - negated subgoals
 - implicit union
- We call this
 - “non-recursive Datalog with negation”
 - denoted: nr-Datalog
Query language classes

Recursive Queries

FO queries

Conjunctive Queries

Expressiveness

Algebra

Logic

SQL

RA

(safe) RC

UCQ

SFW + UNION EXCEPT

nr-Datalog

UCQ

CQ<

CQ≠

CQ

RA: σ,π,⊔

single datalog rule

S^dFW
Recursive example

Two forms of transitive closure:

Graph: $R(x,y)$

Path$(x,y) :- R(x,y)$
Path$(x,y) :-$ Path(x,u), $R(u,y)$

Path$(x,y) :- R(x,y)$
Path$(x,y) :-$ Path(x,u), Path(u,y)
Recursive Example

- **EDB:** \(\text{Par}(c,p) = p \) is a parent of \(c \).
- **Generalized cousins:** people with common ancestors one or more generations back:
 \[
 \text{Sib}(x,y) \leftarrow \text{Par}(x,p), \text{Par}(y,p), x \neq y
 \]
 \[
 \text{Cousin}(x,y) \leftarrow \text{Sib}(x,y)
 \]
 \[
 \text{Cousin}(x,y) \leftarrow \text{Par}(x,x_p), \text{Par}(y,y_p), \text{Cousin}(x_p,y_p)
 \]
Definition of Recursion

• Form a dependency graph whose nodes = IDB predicates.
• Arc X -> Y if and only if there is a rule with X in the head and Y in the body.
• Cycle = recursion; no cycle = no recursion.
Example: Dependency Graphs

Recursive

\[
\text{Sib}(x,y) \ :- \ \text{Par}(x,p), \ \text{Par}(y,p), \ x \neq y
\]
\[
\text{Cousin}(x,y) \ :- \ \text{Sib}(x,y)
\]

Nonrecursive

\[
\text{Cousin}(x,y) \ :- \ \text{Par}(x,x_p), \ \text{Par}(y,y_p), \ \text{Cousin}(x_p,y_p)
\]

Sib(x,y) :- Par(x,p), Par(y,p), x\neq y
Cousin(x,y) :- Sib(x,y)
Cousin(x,y) :- Par(x,x_p), Par(y,y_p), Cousin(x_p,y_p)
Variants of Datalog

<table>
<thead>
<tr>
<th></th>
<th>without recursion</th>
<th>with recursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>without ¬</td>
<td>Non-recursive Datalog = UCQ</td>
<td>Datalog</td>
</tr>
<tr>
<td>with ¬</td>
<td>Non-recursive Datalog(^-) = FO</td>
<td>Datalog(^-)</td>
</tr>
</tbody>
</table>
Query language classes

Recursive Queries

FO queries

Conjunctive Queries

Expressiveness

Algebra

Logic

SQL

Datalog

Datalog¬

nr-Datalog¬

RA

(safe) RC

UCQ¬

SFW +

UNION

EXCEPT

Conjunctive Queries

RA:

σ, π, χ

single datalog rule

SdFW

UCQ

CQ<

CQ≠

CQ¬
Meaning of Datalog rules

• Model theoretic
 – datalog rules define a set of satisfying relations
 • whenever body true, head is true

• Proof theoretic
 – Set of facts derivable from EDB relations by applying the rules
Evaluating Recursive Rules

- The following works when there is no negation:
 1. Start by assuming all IDB relations are empty.
 2. Repeatedly evaluate the rules using the EDB and the previous IDB, to get a new IDB.
 3. End when no change to IDB.

“Fixed Point”
The “Naïve” Evaluation Algorithm

Start:
IDB = ∅

Apply rules to IDB, EDB

Change to IDB?

yes

no

done
Example: Evaluation of Cousin

• We’ll proceed in rounds to infer Sib facts and Cousin facts.
• Remember the rules:

\[
\text{Sib}(x,y) \leftarrow \text{Par}(x,p) \land \text{Par}(y,p) \land x \neq y
\]
\[
\text{Cousin}(x,y) \leftarrow \text{Sib}(x,y)
\]
\[
\text{Cousin}(x,y) \leftarrow \text{Par}(x,xp) \land \text{Par}(y,yp) \land \text{Cousin}(xp,yp)
\]
Seminaive Evaluation

- Since the EDB never changes, on each round we only get new IDB tuples if we use at least one IDB tuple that was obtained on the previous round.
- Saves work; lets us avoid rediscovering most known facts.
 - A fact could still be derived in a second way.
Par Data: Parent Above Child

Sibling

Cousin

Round 1
Round 2
Round 3
Round 4
Datalog (no \(\neg \))

- There are three equivalent meanings for a datalog rule
 - least fixed point
 - (unique) minimal model
 - set of facts derivable from EDBs
Recursion Plus Negation

• “Naïve” evaluation doesn’t work when there are negated subgoals.
• In fact, negation wrapped in a recursion makes no sense in general.
• Even when recursion and negation are separate, we can have ambiguity about the correct IDB relations.
Stratified Negation

- Stratification is a constraint usually placed on Datalog with recursion and negation.
- It rules out negation wrapped inside recursion.
- Gives the sensible IDB relations when negation and recursion are separate.
Another example

\[P(x) :\text{-} R(x) \& \neg Q(x) \]
\[Q(x) :\text{-} R(x) \& \neg P(x) \]

• Suppose \(R = \{(1)\} \)
• Two models that satisfy rules:
 - \(P = \{\} \quad Q = \{1\} \)
 - \(P = \{1\} \quad Q = \{\}\)
• Neither is minimal
Strata

• Intuitively, the stratum of an IDB predicate P is the maximum number of negations that can be applied to an IDB predicate used in evaluating P.
• Stratified negation = “finite strata.”
Stratum Graph

• To formalize strata use the stratum graph:
 - Nodes = IDB predicates.
 - Arc A -> B if predicate A depends on B.
 - Label this arc “—” if the B subgoal is negated.
Stratified Negation Definition

- The **stratum** of a node (predicate) is the maximum number of – arcs on a path leading from that node.
- A Datalog program is **stratified** if all its IDB predicates have finite strata.
Another example

\[P(x) \iff R(x) \land \neg Q(x) \]
\[Q(x) \iff R(x) \land \neg P(x) \]

• Not stratified
Another Example

- $\text{EDB} = \text{Source}(x), \text{Target}(x), \text{Arc}(x,y)$.
- Rules for "targets not reached from any source":

 Reach(x) <- Source(x)
 Reach(x) <- Reach(y) AND Arc(y,x)
 NoReach(x) <- Target(x) & ¬ Reach(x)
The Stratum Graph

Stratum 0:
No – arcs on any path out.

Stratum 1:
≤ 1 arc on any path out.

Stratum 0:
No – arcs on any path out.
The Stratified Model

• When the Datalog program is stratified, we can evaluate IDB predicates lowest-stratum-first.
• Once evaluated, treat it as EDB for higher strata.
Assumption

• When the logic is stratified, the stratified model is the one that “makes sense.”
• This principle is used in SQL-99 recursion --- the stratified model is defined to be the correct query result.
Variants of Datalog

<table>
<thead>
<tr>
<th></th>
<th>without recursion</th>
<th>with recursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>without ¬</td>
<td>Non-recursive Datalog = UCQ</td>
<td>Datalog</td>
</tr>
<tr>
<td>with ¬</td>
<td>Non-recursive Datalog(\neg) = FO</td>
<td>Datalog(\neg)</td>
</tr>
</tbody>
</table>
Query language classes

Recursive Queries

FO queries

Conjunctive Queries

Expressiveness

Algebra

Logic

SQL

Datalog

Datalog\(^\neg\)

nr-Datalog\(^\neg\)

RA

(safe) RC

UCQ\(^\neg\)

SFW +

UNION

EXCEPT

RA:

σ, π, χ

single datalog rule

S\(d\)FW

UCQ

CQ<

CQ\(\neq\)

CQ\(^\neg\)
Containment for Datalog

• **Theorem** Containment for datalog programs is undecidable.
Overview of complexity of containment

<table>
<thead>
<tr>
<th></th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>NP-complete</td>
</tr>
<tr>
<td>UCQ</td>
<td>NP-complete</td>
</tr>
<tr>
<td>nr-Datalog (no (\neg))</td>
<td>(\Pi^p_2)</td>
</tr>
<tr>
<td>CQ(\neg)</td>
<td>(\Pi^p_2)</td>
</tr>
<tr>
<td>CQ<</td>
<td>(\Pi^p_2)</td>
</tr>
<tr>
<td>FO (nr-Datalog)</td>
<td>undecidable</td>
</tr>
<tr>
<td>Datalog</td>
<td>undecidable</td>
</tr>
</tbody>
</table>