Schema Refinement

Feb 4, 2010
Relational Schema Design

Conceptual Design

ER Model

Logical design

Relational Schema plus Integrity Constraints

Schema Refinement

Normalized schema
Outline

- ER diagrams (Ch 2)
- ER diagrams to relational tables (Ch 3.5)
- Schema Refinement, Normalization (Ch 19)

Please read in text.
Integrity Constraints

• Limitation on feasible data instances
 – Domain conditions
 – Key Constraint
 – Foreign key constraint
 – Functional dependency
• A relation instance can violate an IC
• But satisfaction of an IC can never be determined by inspecting a relation instance.
Evils of Redundancy

- *Redundancy* is at the root of several problems associated with relational schemas:

 Redundant storage:
 data is repeated

 Update anomalies:
 need to change in several places

 Insertion anomalies:
 may not be able to add data we want to

 Deletion anomalies:
 may lose data when we don’t want to
Schema Refinement

• Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.
• Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD, or ACD and ABD).

• Decomposition should be used judiciously:
 ▪ Is there reason to decompose a relation?
 ▪ What problems (if any) does the decomposition cause?
First Normal Form (1NF)

- A database schema is in First Normal Form if all tables are flat.

Student

<table>
<thead>
<tr>
<th>Name</th>
<th>GPA</th>
<th>Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>3.8</td>
<td>Math</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OS</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>3.7</td>
<td>DB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OS</td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>3.9</td>
<td>Math</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OS</td>
<td></td>
</tr>
</tbody>
</table>

Takes

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Math</td>
</tr>
<tr>
<td>Carol</td>
<td>Math</td>
</tr>
<tr>
<td>Alice</td>
<td>DB</td>
</tr>
<tr>
<td>Bob</td>
<td>DB</td>
</tr>
<tr>
<td>Alice</td>
<td>OS</td>
</tr>
<tr>
<td>Carol</td>
<td>OS</td>
</tr>
</tbody>
</table>

Course

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
</tr>
<tr>
<td>DB</td>
</tr>
<tr>
<td>OS</td>
</tr>
</tbody>
</table>
More Normal Forms

• Based on Functional Dependencies
 – 2nd Normal Form (obsolete)
 – 3rd Normal Form
 – Boyce Codd Normal Form (BCNF)
• Based on Multivalued Dependencies
 – 4th Normal Form
• Based on Join Dependencies
 – 5th Normal Form
Functional Dependencies

• A kind of integrity constraint
 – (hence, part of the schema)
• Finding them is part of the database design

Recall that a function returns a single unique value when evaluated on any input.
Functional Dependencies

Table R(.... A₁, A₂, ..., Aₙ... B₁, B₂, ..., Bₘ...)

Functional Dependency:

\[A₁, A₂, ..., Aₙ \rightarrow B₁, B₂, ..., Bₘ \]

Meaning:

If two tuples agree on the attributes

\[A₁, A₂, ..., Aₙ \]

then they must also agree on the attributes

\[B₁, B₂, ..., Bₘ \]
Functional Dependencies

Definition: \(A_1, ..., A_n \rightarrow B_1, ..., B_m \) holds in \(R \) if:

\[
\forall t, t' \in R, (t.A_1=t'.A_1 \land ... \land t.A_n=t'.A_n \Rightarrow t.B_1=t'.B_1 \land ... \land t.B_m=t'.B_m)
\]

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>...</th>
<th>(A_n)</th>
<th>(B_1)</th>
<th>...</th>
<th>(B_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- if \(t, t' \) agree here
- then \(t, t' \) agree here
Examples

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E1847</td>
<td>John</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

- EmpID \rightarrow Name, Phone, Position
- Position \rightarrow Phone
- but Phone \nRightarrow Position
Example

Product(name, category, color, department, price)

Consider these FDs:

- name → color
- category → department
- color, category → price
Example

FD’s are constraints:
• On some instances they hold
• On others they don’t

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>

Does this instance satisfy all the FDs?
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Black</td>
<td>Toys</td>
<td>99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Stationary</td>
<td>Green</td>
<td>Office-sup.</td>
<td>59</td>
</tr>
</tbody>
</table>

What about this one?
Anomalies

Hourly_emps(ssn, name, lot, rating, hourly_wages, hours_worked)

Suppose hourly wages is determined by rating:

rating → hourly_wages

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>lot</th>
<th>rating</th>
<th>hourly_wages</th>
<th>hours_worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>brutus</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>85</td>
<td>art</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>95</td>
<td>bob</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>96</td>
<td>frodo</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>22</td>
<td>dustin</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- Redundant storage: association between rating 8 and hourly wages 10 repeated 3 times.
- Update anomalies: hourly_wages updated in first tuple but not second
- Insertion anomalies: must know hourly_wage for rating value
- Deletion anomalies: delete all tuples with certain rating value, lost assoc.
Can null values fix problems?

• Not really.
• Insertion anomaly:
 – What if we know rating and hourly_wages for some rating, but there is no employee with that rating?
 – No. ssn can’t be null.
• Deletion anomaly:
 – If last employee with some rating and hourly_wages value is deleted, replace with nulls?
 – No. ssn can’t be null.
Reasoning about FD’s

If a given set of FDs hold, then it may be possible to infer that others will hold.

If all these FDs are true:

- name \(\rightarrow\) color
- category \(\rightarrow\) department
- color, category \(\rightarrow\) price

Then this FD also holds:

- name, category \(\rightarrow\) price

Why?

We say that the new FD is implied.
Closure of a Set of FDs

Definition. Given a set F of functional dependencies, the *closure*, F^+, denotes all FDs implied by F.

How can we compute F^+?
Computing the Closure F^+

Armstrong’s Axioms
(here X, Y, Z are sets of attributes):

- **Reflexivity**: If $Y \subseteq X$, then $X \rightarrow Y$
- **Augmentation**: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
- **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Theorem. Armstrong axioms are *sound* and *complete* for computing F^+

What do *sound* and *complete* mean?
Additional convenient rule

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

Is equivalent to

\[
A_1, A_2, \ldots, A_n \rightarrow B_1 \\
A_1, A_2, \ldots, A_n \rightarrow B_2 \\
\ldots \\
A_1, A_2, \ldots, A_n \rightarrow B_m
\]
Armstrong’s Axioms

Sometimes called a trivial FD

\[A_1, A_2, \ldots, A_n \rightarrow A_i \]

where \(i = 1, 2, \ldots, n \)

Why?
Transitive Closure Rule

If \(A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \) and \(B_1, B_2, \ldots, B_m \rightarrow C_1, C_2, \ldots, C_p \) then \(A_1, A_2, \ldots, A_n \rightarrow C_1, C_2, \ldots, C_p \)

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(\ldots)</th>
<th>(A_n)</th>
<th>(B_1)</th>
<th>(\ldots)</th>
<th>(B_m)</th>
<th>(C_1)</th>
<th>(\ldots)</th>
<th>(C_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>()</td>
</tr>
<tr>
<td></td>
<td>()</td>
</tr>
<tr>
<td></td>
<td>()</td>
</tr>
<tr>
<td></td>
<td>()</td>
</tr>
</tbody>
</table>
Example (continued)

From:

1. name → color
2. category → department
3. color, category → price

To:

name, category → price

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Which Rule did we apply?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. name, category → name</td>
<td>Trivial rule</td>
</tr>
<tr>
<td>5. name, category → color</td>
<td>Transitivity on 4, 1</td>
</tr>
<tr>
<td>6. name, category → category</td>
<td>Trivial rule</td>
</tr>
<tr>
<td>7. name, category → color, category</td>
<td>Split/combine on 5, 6</td>
</tr>
<tr>
<td>8. name, category → price</td>
<td>Transitivity on 3, 7</td>
</tr>
</tbody>
</table>
Decision Problem

Given F, Is $X \rightarrow Y$ in F^+

How to proceed?

- Apply Armstrong’s Axioms repeatedly to compute F^+
- Better: use the *Closure Algorithm* for a set of attributes (next)
Closure of a set of Attributes

Given Set of FDs F, and a set of attributes A_1, \ldots, A_n

The closure, \{$A_1, \ldots, A_n\}^+$, with respect to F, is the set of attributes B s.t. $A_1, \ldots, A_n \rightarrow B$

Example: $F = \{
\text{name} \rightarrow \text{color},
\text{category} \rightarrow \text{department},
\text{color, category} \rightarrow \text{price}\}$

(Attribute) closures, with respect to F:

$name^+ = \{\text{name, color}\}$

$\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$

$color^+ = \{\text{color}\}$
Closure Algorithm (for Attributes)

Start with $X=\{A_1, \ldots, A_n\}$.

Repeat until X doesn’t change do:

if $B_1, \ldots, B_n \rightarrow C$ is a FD and B_1, \ldots, B_n are all in X
then add C to X.

Example:

name \rightarrow color
category \rightarrow department
color, category \rightarrow price

$\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$
Example

In class:

$$R(A,B,C,D,E,F)$$

\[
\begin{array}{c}
A, B \rightarrow C \\
A, D \rightarrow E \\
B \rightarrow D \\
A, F \rightarrow B
\end{array}
\]

\[
F = \{A, B \rightarrow C, A, D \rightarrow E, B \rightarrow D, A, F \rightarrow B\}
\]

Compute \(\{A, B\}^+\)
\[X = \{A, B, C, D, E\}\]

Compute \(\{A, F\}^+\)
\[X = \{A, F, B, D, C, E\}\]
Keys

- A **superkey** is a set of attributes A_1, \ldots, A_n s.t. $A_1, \ldots, A_n \rightarrow B$ for all attributes B.

- A **key** is a minimal superkey.

 No subset of the attributes functionally determines all other attributes.
Computing Keys

- Compute X^+ for all sets X
- If $X^+ = \text{all attributes}$, then X is a superkey
- Consider only the minimal superkeys

Note: there can be exponentially many keys!

- Example: $R(A,B,C)$, $AB \rightarrow C$, $BC \rightarrow A$
 Keys: AB and BC
Examples of Keys

• **Product**(name, price, category, color)
 name, category \rightarrow price
category \rightarrow color

 Key: \{name, category\}
 Superkeys: supersets

• **Enrollment**(student, address, course, room, time)
 student \rightarrow address
 room, time \rightarrow course
 student, course \rightarrow room, time

 Keys are: [in class]