Evaluation of Relational Operations

Yanlei Diao
UMass Amherst
March 13 and 15, 2006
Relational Operations

- We will consider how to implement:
 - **Selection** (\(\sigma\)) Selects a subset of rows from relation.
 - **Projection** (\(\pi\)) Deletes unwanted columns from relation.
 - **Join** (\(\bowtie\)) Allows us to combine two relations.
 - **Set-difference** (\(-\)) Tuples in reln. 1, but not in reln. 2.
 - **Union** (\(\cup\)) Tuples in reln. 1 and in reln. 2.
 - **Aggregation** (SUM, MIN, etc.) and GROUP BY
 - **Order By** Returns tuples in specified order.

- Since each op returns a relation, ops can be composed! After we cover the operations, we will discuss how to optimize queries formed by composing them.
Outline

- Sorting
- Evaluation of joins
- Evaluation of other operations
Why Sort?

- A classic problem in computer science!
- Important utility in DBMS:
 - Data requested in sorted order (e.g., ORDER BY)
 - e.g., find students in increasing gpa order
 - Sorting useful for eliminating duplicate copies in a collection of records (e.g., SELECT DISTINCT)
 - Sort-merge join algorithm involves sorting.
 - Sorting is first step in bulk loading B+ tree index.
- Problem: sort 1Gb of data with 1Mb of RAM.
2-Way Sort: Requires 3 Buffers

- Pass 1: Read a page, sort it, write it.
 - only one buffer page is used
- Pass 2, 3, ..., etc.:
 - three buffer pages used.
Two-Way External Merge Sort

- Each pass we read + write each page in file => 2N.
- N pages in the file => the number of passes = \[\lceil \log_2 N \rceil + 1\]
- So total cost is:
 \[2N\left(\lceil \log_2 N \rceil + 1\right)\]

- **Idea:** Divide and conquer: sort subfiles and merge
General External Merge Sort

* More than 3 buffer pages. How can we utilize them?

- To sort a file with N pages using B buffer pages:
 - Pass 0: use B buffer pages. Produce $\lceil N / B \rceil$ sorted runs of B pages each.
 - Pass 2, …, etc.: merge B-1 runs.

```
+------------------------+       +------------------------+       +------------------------+
|                         | INPUT |                         | INPUT |                         | OUTPUT |
| Disk                    | 1     | Disk                    | 2     | Disk                    |
|                         |       | Main memory buffers     |       |                         |
|                         |       |                         |       | Disk                    |
|                         |       | INPUT B-1               |       |                         |
+------------------------+       +------------------------+       +------------------------+
```

More than 3 buffer pages. How can we utilize them?
Cost of External Merge Sort

- Number of passes: \(1 + \left\lceil \log_{B-1} \left\lfloor \frac{N}{B} \right\rfloor \right\rceil \)
- Cost = \(2N \times (\# \text{ of passes}) \)
- E.g., with 5 buffer pages, to sort 108 page file:
 - Pass 0: \(\left\lfloor \frac{108}{5} \right\rfloor = 22 \) sorted runs of 5 pages each (last run is only 3 pages)
 - Pass 1: \(\left\lfloor \frac{22}{4} \right\rfloor = 6 \) sorted runs of 20 pages each (last run is only 8 pages)
 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages
Number of Passes of External Sort

<table>
<thead>
<tr>
<th>N</th>
<th>B=3</th>
<th>B=5</th>
<th>B=9</th>
<th>B=17</th>
<th>B=129</th>
<th>B=257</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,000</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10,000</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>100,000</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10,000,000</td>
<td>23</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>100,000,000</td>
<td>26</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Blocked I/O for External Merge Sort

- … longer runs often means fewer passes!
- Actually, do I/O a page at a time
- In fact, read a block of pages sequentially!
- Suggests we should make each buffer (input/output) be a block of pages.
 - But this will reduce fan-out during merge passes!
 - In practice, most files still sorted in 2-3 passes.
Double Buffering

- To reduce wait time for I/O request to complete, can *prefetch* into `shadow block`.
 - Potentially, more passes; in practice, most files *still* sorted in 2-3 passes.

B main memory buffers, k-way merge

```
Disk

INPUT 1
INPUT 1'
INPUT 2
INPUT 2'
INPUT k
INPUT k'

OUTPUT
OUTPUT'

Disk

b block size
```
Sorting Records!

- Sorting has become a blood sport!
 - Parallel sorting is the name of the game ...
- Datamation sort benchmark: Sort 1M records of size 100 bytes
 - Typical DBMS: 15 minutes
 - World records: 1.18 seconds (1998 record)
 - 16 off-the-shelf PC, each with 2 Pentium processor, two hard disks, running NT4.0.

- New benchmarks proposed:
 - Minute Sort: How many can you sort in 1 minute?
 - Dollar Sort: How many can you sort for $1.00?
Using B+ Trees for Sorting

- **Scenario:** Table to be sorted has B+ tree index on sorting column(s).
- **Idea:** Can retrieve records in order by traversing leaf pages.
- **Is this a good idea?**
- **Cases to consider:**
 - B+ tree is clustered (Good idea!)
 - B+ tree is not clustered (Could be a very bad idea!)
Clustered B+ Tree Used for Sorting

- Cost: root to the left-most leaf, then retrieve all leaf pages (Alternative 1)

- If Alternative 2 is used? Additional cost of retrieving data records: each page fetched just once.

* Always better than external sorting! [Diagram of B+ Tree with Index, Data Entries, and Data Records]
Unclustered B+ Tree Used for Sorting

- Alternative (2) for data entries; each data entry contains *rid* of a data record. In general, one I/O per data record!

Worse case I/O: pN
- p: # records per page
- N: # pages in file
External Sorting vs. Unclustered Index

<table>
<thead>
<tr>
<th>N</th>
<th>Sorting</th>
<th>p=1</th>
<th>p=10</th>
<th>p=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>200</td>
<td>100</td>
<td>1,000</td>
<td>10,000</td>
</tr>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>1,000</td>
<td>10,000</td>
<td>100,000</td>
</tr>
<tr>
<td>10,000</td>
<td>40,000</td>
<td>10,000</td>
<td>100,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>100,000</td>
<td>600,000</td>
<td>100,000</td>
<td>1,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>1,000,000</td>
<td>8,000,000</td>
<td>1,000,000</td>
<td>10,000,000</td>
<td>100,000,000</td>
</tr>
<tr>
<td>10,000,000</td>
<td>80,000,000</td>
<td>10,000,000</td>
<td>100,000,000</td>
<td>1,000,000,000</td>
</tr>
</tbody>
</table>

* p: # of records per page

* B=1,000 and block size=32 for sorting

* p=100 is the more realistic value.
Summary

- External sorting is important; DBMS may dedicate part of buffer pool for sorting!
- External merge sort minimizes disk I/O cost:
 - Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs.
 - # of runs merged at a time depends on B, and block size.
 - Larger block size means less I/O cost per page.
 - Larger block size means smaller # runs merged.
 - In practice, # of runs rarely more than 2 or 3.
- Clustered B+ tree is good for sorting; unclustered tree is usually very bad.
Outline

- Sorting
- Evaluation of joins
- Evaluation of other operations
Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

- Reserves:
 - Each tuple is 40 bytes long,
 - 100 tuples per page,
 - 1000 pages.

- Sailors:
 - Each tuple is 50 bytes long,
 - 80 tuples per page,
 - 500 pages.
Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

- In algebra: $R \bowtie S$. Common relational operation!
 - $R \times S$ is large; $R \times S$ followed by a selection is inefficient.
 - Must be carefully optimized.
- Assume: M tuples in R, p_R tuples per page, N tuples in S, p_S tuples per page.
 - In our examples, R is Reserves and S is Sailors.
- We will consider more complex join conditions later.
- Cost metric: # of I/Os. We will ignore output costs.
Simple Nested Loops Join

```plaintext
foreach tuple r in R do
    foreach tuple s in S do
        if r_i == s_j then add <r, s> to result
```

- For each tuple in the outer relation R, we scan the entire inner relation S.
 - Cost: \(M + p_R \times M \times N = 1000 + 100 \times 1000 \times 500 = 1,000 + (5 \times 10^7) \) I/Os.
 - Assuming each I/O takes 10 ms, the join will take about 140 hours!
Page-Oriented Nested Loops Join

- For each page of R, get each page of S, and write out matching pairs of tuples <r, s>, where r is in R-page and S is in S-page.
 - Cost: \(M + M \times N = 1000 + 1000 \times 500 = 501,000 \) I/Os.
 - Assuming each I/O takes 10 ms, the join will take about 1.4 hours.

- Choice of the smaller relation as the outer
 - If smaller relation (S) is outer, cost = 500 + 500\times1000 = 500,500 \) I/Os.
Block Nested Loops Join

- Take the smaller relation, say R, as outer, the other as inner.
- Use one buffer for scanning the inner S, one buffer for output, and use all remaining buffers to hold ``block’’ of outer R.
 - For each matching tuple r in R-block, s in S-page, add <r, s> to result.
 - Then read next page in S, until S is finished.
 - Then read next R-block, scan S…
Examples of Block Nested Loops

- **Cost:** Scan of outer + #outer blocks * scan of inner
 - #outer blocks = ⌈# pages of outer / block size⌉
 - Given available buffer size B, block size is at most B-2.

- **With Sailors (S) as outer, a block has 100 pages of S:**
 - Cost of scanning S is 500 I/Os; a total of 5 blocks.
 - Per block of S, we scan Reserves; 5*1000 I/Os.
 - Total = 500 + 5 * 1000 = 5,500 I/Os.

- **With sequential reads considered, analysis changes:**
 - Read S also in a block-based fashion.
 - May be best to divide buffers evenly between R and S.
 - May result in more passes, but reduced seeking time.
Index Nested Loops Join

foreach tuple \(r \) in \(R \) do
 foreach tuple \(s \) in \(S \) where \(r_i == s_j \) do
 add \(<r, s> \) to result

- If there is an index on the join column of one relation (say \(S \)), can make it the inner and exploit the index.
 - Cost: \(M + ((M*p_R) * \text{cost of finding matching S tuples}) \)

- For each \(R \) tuple, cost of probing \(S \) index is about 1.2 for hash index, 2-4 for B+ tree. Cost of then finding \(S \) tuples (assuming Alt. (2) or (3) for data entries) depends on clustering.
 - Clustered index: 1 I/O (typical).
 - Unclustered: upto 1 I/O per matching \(S \) tuple.
Examples of Index Nested Loops

- **Hash-index (Alt. 2) on sid of Sailors (as inner):**
 - Scan Reserves: 1000 page I/Os, 100*1000 tuples.
 - For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Sailors tuple.
 - Total: 1000+ 100*1000*2.2 = 221,000 I/Os.

- **Hash-index (Alt. 2) on sid of Reserves (as inner):**
 - Scan Sailors: 500 page I/Os, 80*500 tuples.
 - For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples. If uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os (cluster?).
 - Total: 500+80*500*(2.2~3.7) = 88,500~148,500 I/Os.
Sort-Merge Join \((R \bowtie \bowtie S)_{i=j}\)

- (1) **Sort** \(R\) and \(S\) on the join column, (2) **Merge** them (on join col.), and output result tuples.
- **Merge**: repeat until either \(R\) or \(S\) is finished
 - **Scanning**: Advance scan of \(R\) until current \(R\)-tuple\(\geq\)current \(S\) tuple, advance scan of \(S\) until current \(S\)-tuple\(\geq\)current \(R\) tuple; do this until current \(R\) tuple = current \(S\) tuple.
 - **Matching**: Now all \(R\) tuples with same value in \(R_i\) (current \(R\) group) and all \(S\) tuples with same value in \(S_j\) (current \(S\) group) match; output \(<r, s>\) for all pairs of such tuples.
- **\(R\) is scanned once; each \(S\) group is scanned once per matching \(R\) tuple.** (Multiple scans of an \(S\) group are likely to find needed pages in buffer.)
Example of Sort-Merge Join

- **Cost:** \(M \log M + N \log N + (M+N) \)
 - The cost of merging, \(M+N \), could be \(M\times N \) (very unlikely!)
 - \(M+N \) is guaranteed in *key-foreign key join* (why?)
 - As with sorting, \(\log M \) and \(\log N \) are small numbers, e.g., 3, 4.

- With 35, 100 or 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: 7500.

\[\text{BNL cost: } 2500 \; (B=300), \; 5500 \; (B=100), \; 15000 \; (B=35) \]

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>rname</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>103</td>
<td>12/4/96</td>
<td>guppy</td>
</tr>
<tr>
<td>28</td>
<td>103</td>
<td>11/3/96</td>
<td>yuppy</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/10/96</td>
<td>dustin</td>
</tr>
<tr>
<td>31</td>
<td>102</td>
<td>10/12/96</td>
<td>lubber</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
<td>dustin</td>
</tr>
</tbody>
</table>
Refinement of Sort-Merge Join

- Combine the merging phases in the sorting of R and S with the merging required for the join.
- Design a 2-pass algorithm for sort-merge join:
 - Pass 0: sort R, S individually
 - Pass 1: merge sorted runs of R, merging sorted runs of S, and merge resulting R and S streams as they are generated by checking join condition.
Replacement Sort

- Produces sorted runs as long as possible.
- Pick tuple \(r \) in the current set with the smallest value that is \(\geq \) largest value in output, e.g. 8 in the example.
- Fill the space in current set by adding tuples from input.
- Write output buffer out if full, extending the current run.
- Current run terminates if every tuple in the current set if smaller than the largest tuple in output.
- When used in Pass 0 for sorting, can write out sorted runs of size \(2B \) on average.
2-Pass Sort-Merge Algorithm

- Sorting refinement (“replacement sort”) produces runs of length 2B in Pass 0.

- Memory requirement for 2-pass sort-merge:
 - Assume L is the size of the larger relation. $L = \max(M, N)$.
 - **Sorting** pass produces sorted runs of length 2B. # of runs per relation $\leq L/2B$.
 - **Merging** pass holds sorted runs of both relations and an output buffer, merges while checking join condition.

 \[
 2\frac{L}{2B} < B \rightarrow B > \sqrt{L}
 \]

- Cost: read+write each relation in Pass 0 + read each relation in merging pass (+ writing result tuples, ignore here) $= 3 \times (M+N)$!
 - In example, cost goes down from 7500 to 4500 I/Os.
Hash-Join

- **Partitioning**: Partition both relations using hash function h: R tuples in partition i will only match S tuples in partition i.

- **Probing**: Read in partition i of R, build hash table on R_i using h_2 ($<> h_1$). Scan partition i of S, search for matches.
Observations on Hash-Join

- # partitions ≤ B-1, and size of largest partition ≤ B-2 to be held in memory. Assuming uniformly sized partitions, we get:
 - M / (B-1) < (B-2), i.e., B must be >√M
 - Hash-join works if the smaller relation satisfies above.
- If we build an in-memory hash table to speed up the matching of tuples, a little more memory is needed.
- If hash function h does not partition uniformly, one or more R partitions may not fit in memory. Can apply hash-join technique recursively to do the join of this R-partition with corresponding S-partition.
Cost of Hash-Join

- Partitioning reads+writes both relns; $2(M+N)$. Probing reads both relns; $M+N$ I/Os. The total is $3(M+N)$.
 - In our running example, a total of 4500 I/Os using hash join, less than 1 min (compared to 140 hours w. NLJ).

- Sort-Merge Join vs. Hash Join:
 - Given a minimum amount of memory (what is this, for each?) both have a cost of $3(M+N)$ I/Os.
 - Hash Join superior on this count if relation sizes differ greatly. Assuming $M<N$, what if $\sqrt{M} < B < \sqrt{N}$? Also, Hash Join is shown to be highly parallelizable.
 - Sort-Merge less sensitive to data skew; result is sorted.
General Join Conditions

- Equalities over several attributes (e.g., $R.sid=S.sid$ AND $R.rname=S.sname$):
 - For Index NL, build index on \(<sid, sname>\) (if S is inner); or use existing indexes on sid or sname and check the other join condition on the fly.
 - For Sort-Merge and Hash Join, sort/partition on combination of the two join columns.

- Inequality conditions (e.g., $R.rname < S.sname$):
 - For Index NL, need B+ tree index.
 - Range probes on inner; # matches likely to be much higher than for equality joins (clustered index is much preferred).
 - Hash Join, Sort Merge Join not applicable.
 - Block NL quite likely to be a winner here.
Outline

- Sorting
- Evaluation of joins
- Evaluation of other operations
Using an Index for Selections

- Cost depends on the number of qualifying tuples, and clustering.
 - Cost of finding qualifying data entries (typically small) plus cost of retrieving records (could be large without clustering).
 - Consider a selection of the form gpa > 3.0 and assume 10% of tuples qualify (100 pages, 10,000 tuples). With a clustered index, cost is little more than 100 I/Os; if unclustered, up to 10,000 I/Os!

- Important refinement for unclustered indexes:
 1. Find qualifying data entries.
 2. Sort the rid’s of the data records to be retrieved.
 3. Fetch rids in order.

This ensures that each data page is looked at just once (though the number of such pages likely to be higher than with clustering).
Two Approaches to General Selections

- **First approach:** (1) Find the *most selective access path*, retrieve tuples using it, and (2) apply any remaining terms that don’t match the index *on the fly*.
 - *Most selective access path:* An index or file scan that we estimate will require the fewest page I/Os.
 - Terms that match this index reduce the number of tuples retrieved; other terms are used to discard some retrieved tuples, but do not affect number of tuples/pages fetched.
 - Consider $\text{day} < 8/9/94 \ \text{AND} \ \text{bid}=5 \ \text{AND} \ \text{sid}=3$.
 - A B+ tree index on day can be used; then, $\text{bid}=5$ and $\text{sid}=3$ must be checked for each retrieved tuple.
 - A hash index on $\langle \text{bid}, \text{sid} \rangle$ could be used; $\text{day} < 8/9/94$ must then be checked on the fly.
Intersection of Rids

- **Second approach** (if we have 2 or more matching indexes that use Alternatives (2) or (3) for data entries):
 - Get sets of rids of data records using each matching index.
 - Then *intersect* these sets of rids.
 - Retrieve the records and apply any remaining terms.
 - Consider *day*<8/9/94 AND *bid*=5 AND *sid*=3. If we have a B+ tree index on *day* and an index on *sid*, both using Alternative (2), we can:
 - retrieve rids of records satisfying *day*<8/9/94 using the first, rids of records satisfying *sid*=3 using the second,
 - intersect these rids,
 - retrieve records and check *bid*=5.
The Projection Operation

<table>
<thead>
<tr>
<th>SELECT DISTINCT R.sid, R.bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM Reserves R</td>
</tr>
</tbody>
</table>

- Projection consists of two steps:
 - Remove unwanted attributes (i.e., those not specified in the projection).
 - Eliminate any duplicate tuples that are produced.

- Algorithms: single relation sorting and hashing based on all remaining attributes.
Projection Based on Sorting

- Modify Pass 0 of external sort to eliminate unwanted fields. Thus, runs of about 2B pages are produced, but tuples in runs are smaller than input tuples. (Size ratio depends on # and size of fields that are dropped.)

- Modify merging passes to eliminate duplicates. Thus, number of result tuples smaller than input. (Difference depends on # of duplicates.)

- **Cost:** In Pass 0, read original relation (size M), write out same number of smaller tuples. In merging passes, fewer tuples written out in each pass.
 - Using Reserves example, 1000 input pages reduced to 250 in Pass 0 if size ratio is 0.25
Projection Based on Hashing

- **Partitioning phase**: Read R using one input buffer. For each tuple, discard unwanted fields, apply hash function $h1$ to choose one of $B-1$ output buffers.
 - Result is $B-1$ partitions (of tuples with no unwanted fields). 2 tuples from different partitions guaranteed to be distinct.

- **Duplicate elimination phase**: For each partition, read it and build an in-memory hash table, using hash fn $h2$ ($<> h1$) on all fields, while discarding duplicates.
 - If partition does not fit in memory, can apply hash-based projection algorithm recursively to this partition.

- **Cost**: For partitioning, read R, write out each tuple, but with fewer fields. This is read in next phase.
Discussion of Projection

- Sort-based approach is the standard; better handling of skew and result is sorted.
- If an index on the relation contains all wanted attributes in its search key, can do index-only scan.
 - Apply projection techniques to data entries (much smaller!)
- If an ordered (i.e., tree) index contains all wanted attributes as prefix of search key, can do even better:
 - Retrieve data entries in order (index-only scan), discard unwanted fields, compare adjacent tuples to check for duplicates.
Set Operations

- Intersection and cross-product special cases of join.
 - Intersection: equality on all fields.
- Union (Distinct) and Except similar; we’ll do union.
- Sorting based approach to union:
 - Sort both relations (on combination of all attributes).
 - Scan sorted relations and merge them, removing duplicates.
- Hash based approach to union:
 - Partition R and S using hash function h.
 - For each S-partition, build in-memory hash table (using $h2$). Scan R-partition. For each tuple, probe the hash table. If the tuple is in the hash table, discard it; o.w. add it to the hash table.
Aggregate Operations (AVG, MIN, etc.)

- **Without grouping:**
 - In general, requires scanning the relation.
 - Given index whose search key includes all attributes in the SELECT or WHERE clauses, can do index-only scan.

- **With grouping (GROUP BY):**
 - Sort on group-by attributes, then scan relation and compute aggregate for each group. (Can improve upon this by combining sorting and aggregate computation.)
 - Similar approach based on hashing on group-by attributes.
 - Given tree index whose search key includes all attributes in SELECT, WHERE and GROUP BY clauses, can do index-only scan; if group-by attributes form prefix of search key, can retrieve data entries/tuples in group-by order.
Summary

- A virtue of relational DBMSs: *queries are composed of a few basic operators*; the implementation of these operators can be carefully tuned (and it is important to do this!).

- Many implementation techniques for each operator; no universally superior technique for most operators.

- Must consider available alternatives for each operation in a query and choose best one based on system state (e.g., memory) and statistics (table size, # tuples matching value k). This is part of the broader task of optimizing a query composed of several ops.