MovieNet: A Social Network for Movie Enthusiasts

445 Course Project

Yanlei Diao
UMass Amherst
Overview

- MovieNet is a social network for movie enthusiasts, containing a database of movies, actors/actresses, directors, etc., and a social network of movie enthusiasts.
 - Users of MovieNet can search for movies and artists.
 - They can also rate movies.
 - They can further be friends with each other based on movie interests or other similarities.
 - An online movie store can pay to join MovieNet and publish ads that are customized to each user based on her movie interest.
Project Requirements

- Schema design, data cleaning and loading (20%)
- Basic functionalities of a movie database (40%)
 - Searches: from simple to complex
 - User login and ratings
 - DB admin: updates, direct SQL queries
 - Constraints: schema design, data loading, user ratings
- Performance requirements (20%)
 - A few seconds for most queries
 - Normalization, physical tuning with indexes
- Web interface and extensions beyond above (20%)
 - Social networking among movie fans
 - Customized advertisements...
Step 1: ER Diagram

- **Entity sets**
 - Movies, Actors/Actresses, Directors, Producers, MPAA ratings, Genres, Keywords...
 - Deduplication: e.g., “John Smith I”, “John Smith II”
 - Users (login, name, age...), Friend network
 - Online movie company?

- **Relationship sets**
 - A movie has a cast, a director (optional), a producer (optional), genres (optional), keywords (optional), ratings (optional), reviews (optional)...
 - Users can rate and write reviews for movies, and be friends with each other...

- **Constraints**
 - A user can rate a movie once? Age constraint?
Data Sets

<table>
<thead>
<tr>
<th>Title</th>
<th>The Dark Knight Rises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2012</td>
</tr>
<tr>
<td>Running Time</td>
<td>165</td>
</tr>
<tr>
<td>MPAA Rating</td>
<td>PG-13</td>
</tr>
<tr>
<td>Genres</td>
<td>Action, Crime, Thriller</td>
</tr>
<tr>
<td>Key Words</td>
<td>action-hero, bat, billionaire, bomb, car-crash, catwoman</td>
</tr>
<tr>
<td>Producers</td>
<td>Nolan, Christopher (I), Roven, Charles Thomas, Emma (I)</td>
</tr>
<tr>
<td>Directors</td>
<td>Nolan, Christopher (I)</td>
</tr>
<tr>
<td>Editors</td>
<td>Smith, Lee (II)</td>
</tr>
<tr>
<td>Actor</td>
<td>Bale, Christian</td>
</tr>
<tr>
<td>Actress</td>
<td>Hathaway, Anne</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Life of Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2012</td>
</tr>
</tbody>
</table>

...
Data Sets

Users

<table>
<thead>
<tr>
<th>Email</th>
<th>Username</th>
<th>Password</th>
<th>Age</th>
<th>Gender</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>sheldon@def.com</td>
<td>John Smith</td>
<td>45G5x$dd</td>
<td>21</td>
<td>Male</td>
<td>Massachusetts</td>
</tr>
<tr>
<td>jsmith@abc.com</td>
<td>John Smith</td>
<td>johnpass</td>
<td>50</td>
<td>Male</td>
<td>New York</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ratings

<table>
<thead>
<tr>
<th>User Email</th>
<th>Title</th>
<th>Year</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>sheldon@def.com</td>
<td>The Shawshank Redemption</td>
<td>1994</td>
<td>6</td>
</tr>
<tr>
<td>sheldon@def.com</td>
<td>The Dark Knight Rises</td>
<td>2012</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MPAA

<table>
<thead>
<tr>
<th>Rating</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>General Audiences. All Ages Admitted.</td>
<td>A G-rated motion picture contains ...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes on the Data Set

- A movie can be uniquely identified by the combination of its title and year. A movie always has a line for “Title”, and a line for “Year”. For some movies, the year is 0, which means the actual year is unknown.

- All the attribute lines, except “Title” and “Year”, could be missing for a movie. For example, the directors or producers may be unknown for a movie.

- A movie may have multiple values for “Genres”, and the values are listed in the same line. The same for “Key Words”, “Producers”, “Directors” and “Editors”.

- The actors/actresses of a movie are listed in separate lines. Each line contains the name of the actor/actress after the first TAB, and the name of the roll after the second TAB. An actor/actress may play multiple rolls in a movie. Multiple actors/actresses may play the same roll in a movie. If a roll name is “\N”, it means the actual roll name is unknown.

- A person can be an actor/actress, a producer, a director and an editor at the same time in the movies (even in the same movie). A person can be uniquely identified by her name. In the case that multiple persons have the same name, special tags (such as roman numbers) have been appended to the name of each person in the data set to remove ambiguity.
Upcoming Deadlines

- Groups formed on Feb 10
 - Please email help-cs445@edlab-mail.cs.umass.edu

- Proposal due on Feb 24
 1. Extension beyond basic functionality and performance requirements
 2. E/R diagram for your **entire** application
Raw Dataset (1)

- **movies.txt** (393,289,550 bytes)
 - Schema:
 - Each movie consists of multiple lines.
 - An empty line separates two movies.

Title<TAB>the title
Year<TAB>the year
Running Time<TAB>length in minutes
MPAA Rating<TAB>the rating
Genres<TAB>genre1<TAB>genre2...
Key Words<TAB>word1<TAB>word2...
Producers<TAB>producer name1<TAB>producer name2...
Directors<TAB>director name1<TAB>director name2...
Editors<TAB>editor name1<TAB>editor name2...
Actor<TAB>actor name1<TAB>role name1
Actor<TAB>actor name2<TAB>role name2
Actress<TAB>actress name1<TAB>role name3
Actress<TAB>actress name2<TAB>role name4
<EMPTY LINE>
...
<table>
<thead>
<tr>
<th>Title</th>
<th>The Dark Knight Rises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2012</td>
</tr>
<tr>
<td>Running Time</td>
<td>165</td>
</tr>
<tr>
<td>MPAA Rating</td>
<td>PG-13</td>
</tr>
<tr>
<td>Genres</td>
<td>Action, Crime, Thriller</td>
</tr>
<tr>
<td>Key Words</td>
<td>action-hero, bat, billionaire, bomb, car-crash, catwoman</td>
</tr>
<tr>
<td>Producers</td>
<td>Nolan, Christopher (I), Roven, Charles, Thomas, Emma (I)</td>
</tr>
<tr>
<td>Directors</td>
<td>Nolan, Christopher (I)</td>
</tr>
<tr>
<td>Editors</td>
<td>Smith, Lee (II)</td>
</tr>
<tr>
<td>Actor</td>
<td>Bale, Christian, Bruce Wayne</td>
</tr>
<tr>
<td>Actor</td>
<td>Oldman, Gary, Commissioner Gordon</td>
</tr>
<tr>
<td>Actress</td>
<td>Hathaway, Anne, Selina</td>
</tr>
<tr>
<td>Actress</td>
<td>Cotillard, Marion, Miranda</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Life of Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2012</td>
</tr>
</tbody>
</table>

...
Data Characteristics

- A movie can be uniquely identified by the combination of its title and year. A movie always has a line for “Title”, and a line for “Year”. For some movies, the year is 0, which means the actual year is unknown.
- All the attribute lines, except “Title” and “Year”, could be missing for a movie. For example, the directors or producers may be unknown for a movie.
- A movie may have multiple values for “Genres”, and the values are listed in the same line. The same for “Key Words”, “Producers”, “Directors” and “Editors”.
- The actors/actresses of a movie are listed in separate lines. Each line contains the name of the actor/actress after the first TAB, and the name of the roll after the second TAB. An actor/actress may play multiple rolls in a movie. Multiple actors/actresses may play the same roll in a movie. If a roll name is “\N”, it means the actual roll name is unknown.
- A person can be an actor/actress, a producer, a director and an editor at the same time in the movies (even in the same movie). A person can be uniquely identified by her name. In the case that multiple persons have the same name, special tags (such as roman numbers) have been appended to the name of each person in the data set to remove ambiguity.
Raw Dataset (2)

- **users.txt** (64,753,924 bytes)
 - Schema:
 - <email, name, password, age, gender, location>
 - Format:
 - All the fields are separated by TAB.
<table>
<thead>
<tr>
<th>Email</th>
<th>Name</th>
<th>Password</th>
<th>Age</th>
<th>Gender</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>oaguilar0@xyz.net</td>
<td>ORA AGUILAR</td>
<td>EC0S3fu0</td>
<td>83</td>
<td>Female</td>
<td>New Jersey</td>
</tr>
<tr>
<td>acampbell1@xyz.net</td>
<td>ANDRE CAMPBELL</td>
<td>4Ipk0Nra</td>
<td>34</td>
<td>Male</td>
<td>Maryland</td>
</tr>
<tr>
<td>chaile2@xyz.net</td>
<td>CYNTHIA HAILE</td>
<td>OSS2xRNA</td>
<td>77</td>
<td>Female</td>
<td>West Virginia</td>
</tr>
<tr>
<td>ejones3@xyz.net</td>
<td>ELAINE JONES</td>
<td>FgKS6FLX</td>
<td>61</td>
<td>Female</td>
<td>Washington</td>
</tr>
<tr>
<td>lrasmussen4@xyz.net</td>
<td>LILLIE RASMUSSEN</td>
<td>8gf5CJE</td>
<td>25</td>
<td>Female</td>
<td>California</td>
</tr>
<tr>
<td>ejones145597@xyz.net</td>
<td>ELAINE JONES</td>
<td>d6FIU90K</td>
<td>57</td>
<td>Female</td>
<td>New York</td>
</tr>
</tbody>
</table>
Raw Dataset (3)

- **ratings.txt** (137,156,280 bytes)
 - Schema:
 `<user email, movie title, movie year, rating>`
 - Format:
 All the fields are separated by TAB.

- **Interesting metrics**
 - **Popularity**: number of ratings of a movie
 - **Goodness**: average rating of a movie
 - Most people want to know about popular and good movies!
<table>
<thead>
<tr>
<th>Email</th>
<th>Movie</th>
<th>Year</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>bfrost422115@xyz.net</td>
<td>Life of Pi</td>
<td>2012</td>
<td>7</td>
</tr>
<tr>
<td>alail492627@xyz.net</td>
<td>Life of Pi</td>
<td>2012</td>
<td>9</td>
</tr>
<tr>
<td>rcrain695898@xyz.net</td>
<td>Life of Pi</td>
<td>2012</td>
<td>8</td>
</tr>
<tr>
<td>pcarter688965@xyz.net</td>
<td>The Dark Knight Rises</td>
<td>2012</td>
<td>9</td>
</tr>
<tr>
<td>nnunnemake901280@xyz.net</td>
<td>The Dark Knight Rises</td>
<td>2012</td>
<td>8</td>
</tr>
</tbody>
</table>
Raw Dataset (4)

- **mpaa.txt** (4,378 bytes)
 - Schema:
 `<MPAA rating, definition, description>`
 - Format:
 All the fields are separated by TAB.
PG Parental Guidance Suggested. Some Material May Not Be Suitable For Children. A PG-rated motion picture may not be appropriate for younger children attend. The PG rating indicates, in the view of the Rating Board, that parents should make that decision. The more mature themes in some PG-rated motion pictures may call for parental guidance. There is no drug use content in a PG-rated motion picture.

PG-13 Parents Strongly Cautioned. Some Material May Be Inappropriate For Children Under 13. Parents want determine whether their children under age 13 should view the motion picture, as some material may not be suitable for children. A PG-13 rated motion picture generally will not be sexually oriented. There may be depictions of violence, but it will not be persistent violence. A motion picture's single use of one of the harsher sexually-derived words, e.g. More than one such expletive requires an R rating, as must even one of those words used in a picture PG-13 if, based on a special vote by a two-thirds majority, the Raters feel that most American parents of the context or manner in which the words are used or because the use of those words in the mo
Datasets Available at

- Small sample files for ER modeling:

 Edlab: /usr/net/ftp/pub/cs445/project/sample_data/

- Complete data sets:

 Edlab: /usr/net/ftp/pub/cs445/project/data/
Step 2: Relational Model

- An entity set translated to a table
 - Set the primary key
 - Can introduce an ID to be the key; use ‘auto_increment’

- A relationship set translated to a table or embedded in an existing table
 - Attributes (Not Null?)
 - Primary key
 - Foreign keys

- Implement complex constraints using constraints or in PHP
 - Triggers: [MySQL vs PostgreSQL Constraints](http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL#Constraints), [Create Trigger](http://dev.mysql.com/doc/refman/5.4/en/create-trigger.html), textbook Ch 5.8
 - PHP: program as you want

```
CREATE TABLE RelName
{ AttrName Type … }
```
Step 3: Parse & Load Data Set

- Raw data sets
 - Raw data format: see the data description above
 - Location on Edlab: /usr/net/ftp/pub/cs445/project/data/

- Project database in MySQL:
 - Database name: FirstLetterOfEachLastName, sorted in lexicographic order
 - `mysql -h cs445sql -p -u $username $group_DB_name`

- Tasks for parsing and loading into your defined tables
 1. Parse data into the format defined in your schema
 2. Change permission of directory and files to be publicly accessible
 3. Load parsed data files into your tables in MySQL

```
LOAD DATA INFILE 'complete_path_of_data_file'
INTO TABLE $table_name FIELDS TERMINATED BY ' \t';
```
Tips on Data Loading

- Prepare a table in a text file outside MySQL. **DO NOT:**
 - run MySQL queries to preprocess the data, or
 - insert a tuple at a time

- Where to place your temporary data files:
 - Under your 445 directory (not your home directory), which gives you enough space
 - Make sure to make your data files **publicly accessible**
More about Data Loading…

- If you decide to use movie_id (or person_id)
 - Declare the field to be ‘auto_increment’;
 - Load movies into table M; movie ids are auto generated;
 - Load each other data file (e.g., Acting) first without the movie id field (say, into Table A1).
 - Join A1 with the movie table M; insert all result tuples into a new table (A2) to be the real Acting table;
 - Delete the old table (A1).
If Data Loading is Slow…

- By default, MySQL (InnoDB) builds a clustered index on the primary key and a secondary index on each foreign key
 - Using B+Tree insertion algorithm
 - We may have to run OPTIMIZE TABLE later
- Having enough memory to hold B+trees helps reduce random I/Os
- Turn off a few operations if data loading is still slow
 - set autocommit = 0
 - set unique_checks = 0
 - set foreign_key_checks = 0
If Data Loading Hangs…

- Background processes may hold locks of tables, and block new processes. Some useful commands:
 - Show background processes
 - “show processlist;”
 (You can get process id, and status info of the processes)
 - Kill a process
 - “kill process_id;”
 (Killing a long-running process may take long)
- Get some idea of the progress of loading
 - “show table status;”
 The Data_length field shows the current size of a table. It should be increasing during the loading process.
Project Update on Data Loading (Mar 10)

1. List of tables created, including attributes, primary keys, foreign keys, and other relevant constraints
 - Can show the CREATE TABLE commands

2. Basic data characteristics of the tables, including the number of rows in each table, and the size of each table

 SHOW TABLE STATUS;

For details, see