Schema Refinement

Yanlei Diao
UMass Amherst

Slides Courtesy of R. Ramakrishnan and J. Gehrke
Consider relation obtained from **Hourly_Emps**:
- Hourly_Emps(ssn, name, lot, rating, hrly_wages, hrs_worked)
- Denote the schema by listing all its attributes: SNLRWH
Example (Contd.)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- Rating (R) determines hourly wages (W):
 - **Redundant storage**
 - **Update**: Can we change W in just the 1st tuple of rating 8?
 - **Insertion**: Insert an employee without knowing the hourly wage for his rating? Insert the hourly wage for rating 10 with no employee?
 - **Deletion**: Delete all employees with rating 5.
Will Two Smaller Tables be Better?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

 Hourly_Emps2

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Wages

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
The Evils of Redundancy

- Redundant storage causes several operation anomalies:
 - Insert and delete anomalies

- **Functional dependencies**, a new type of integrity constraint, can be used to identify schemas with such problems.
 - IC’s we have seen: *domain constraints, key constraints, foreign key constraints, general constraints*
 - A new type of IC: *functional dependencies*
Functional Dependencies (FDs)

- A **functional dependency** $X \rightarrow Y$ holds over relation R if:
 - X and Y are two sets of attributes of R;
 - \forall allowable instance r of R:
 $$t_1 \in r, t_2 \in r, \pi_X(t_1) = \pi_X(t_2) \text{ implies } \pi_Y(t_1) = \pi_Y(t_2)$$

- An FD holds for **all** allowable instances of a schema.

- Key constraint is a special form of FD:
 - K is a candidate key for R means that $K \rightarrow R$.
 - $K \rightarrow R$ does not require K to be minimal!
FDs in the Hourly_Emps Example

- **Hourly_Emps**($\text{ssn, name, office, rating, hrly_wages, hrs_worked}$)
 - Denoted by SNLRWH

- Some FDs on Hourly_Emps:
 - ssn is the key: $\text{S }\rightarrow\text{ SNLRWH}$
 - rating determines hrly_wages: $\text{R }\rightarrow\text{ W}$
Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - \{ssn \rightarrow did, \ did \rightarrow building\} implies ssn \rightarrow building

- Given a set of FDs F, closure of F \(F^+\) is the set of all FDs that are implied by F.
 - All FDs in \(F^+\) hold over the relation R.
Axioms and Rules

- Armstrong’s Axioms (X, Y, Z are sets of attributes):
 - **Reflexivity**: If \(X \subseteq Y \), then \(Y \rightarrow X \)
 - **Augmentation**: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any Z
 - **Transitivity**: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

- Couple of additional rules (that follow from AA):
 - **Union**: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - **Decomposition**: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)

- Computing the closure \(F^+ \) using the axioms/rules:
 - Compute for *all* FD’s.
 - Size of closure is exponential in number of attributes!
Attribute Closure

- What if we just want to check if \textit{a given} FD $X \rightarrow Y$ is in F^+?
- Simple algorithm for \textit{attribute closure} X^+:
 - $X^+ := \{X\}$
 - DO if there is $U \rightarrow V$ in F, s.t. $U \subseteq X^+$,
 then $X^+ = X^+ \cup V$
 UNTIL no change
- Check if \textit{a given} FD $X \rightarrow Y$ is in F^+:
 - Simply check if $Y \subseteq X^+$.
- Does $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D \rightarrow E\}$ imply $A \rightarrow E$?
 - Is $A \rightarrow E$ in the closure F^+?
 - Equivalently, is E in A^+?
Normal Forms

- Role of FDs in detecting redundancy: R(A,B,C)
 - Given A → B: Two tuples have the same A value will have the same B value!
 - No FDs (except key constraints) hold: No redundancy here.

- Normal forms: If a reln does not have certain kinds of FDs, certain redundancy related problems are known not to occur.
Boyce-Codd Normal Form (BCNF)

- Rewrite every FD in the form of $X \rightarrow A$, X is a set of attributes, A is a single attribute
 - Use the decomposition rule

- Reln R with FDs F is in BCNF if $\forall X \rightarrow A$ in F^+:
 1. $A \in X$ (called a trivial FD), or
 2. X is a superkey (i.e., contains a key) for R.

- In BCNF, the only non-trivial FDs are key constraints!
Can we infer the value marked by ‘?’
- If X → A, then the relation is not in BCNF
- A reln in BCNF can’t have X → A

Relation in BCNF:
- Every field of every tuple records information that can’t be inferred using FD’s from other fields.
- No redundancy can be detected using FDs!
Third Normal Form (3NF)

- Reln R with FDs F is in **3NF** if $\forall X \rightarrow A$ in F^+:
 1. $A \in X$ (called a *trivial* FD), or
 2. X is a *superkey* for R, or
 3. A is part of some *key* for R (*minimality* of a key is crucial in the third condition).

- If R is in BCNF, obviously in 3NF.
Third Normal Form (contd.)

- If R is in 3NF, some *redundancy is possible!*
 - **Reserves** (Sailor, Boat, Date, Credit_card) with
 S \(\rightarrow\) C, C \(\rightarrow\) S
 - Keys are SBD and CBD.
 - It is in 3NF.
 - But for each reservation of sailor S, same (S, C) is stored.
More on BCNF and 3NF

- 3NF is a weaker normal form than BCNF.
 - BCNF: no redundancy w.r.t. FDs. Not sure for 3NF.
 - Possible to have lossless-join, dependency-preserving decomposition of R into 3NF. Not true for BCNF!

- To check if a reln R is in BCNF or 3NF, need to compute all the keys of R.

- To enforce FDs in BCNF or 3NF, declare key constraints and checks in CREATE TABLE.
Decomposing a Relation Scheme

- A decomposition of \(R \) breaks \(R \) into two or more relns s.t.
 - Each new reln contains a subset of the attributes of \(R \).
 - Every attribute of \(R \) appears in at least one new reln.

- Decompositions should be used only when:
 - \(R \) has redundancy related problems (not in BCNF or 3NF),
 - We can afford the joins in queries later.
Example Decomposition

- Hourly_Emps (SNLRWH)
 - FDs: S \rightarrow SNLRWH and R \rightarrow W.
 - R \rightarrow W violates 3NF.
 - And it causes repeated (R,W) storage.
- To fix this, create a relation RW, remove W from the main schema. (SNLRWH) \rightarrow (SNLRH) and (RW).
Lossless Join Decompositions

- Decomposition of R into R1 and R2 is \textit{lossless-join} w.r.t. a set of FDs F if ∀ instance r that satisfies F:
 - \(r = \pi_{R_1} (r) \bowtie \pi_{R_2} (r) \)
- It is always true that \(r \subseteq \pi_{R_1} (r) \bowtie \pi_{R_2} (r) \).
 - A bad decomposition can cause \(r \subset \pi_{R_1} (r) \bowtie \pi_{R_2} (r) \).
A Simple Test for Lossless Join

- Decomposition of R into R1 and R2 is lossless-join wrt F iff the F⁺ contains:
 - \(R1 \cap R2 \rightarrow R1 \) or \(R1 \cap R2 \rightarrow R2 \)
 - Intersection of R1 and R2 is a (super) key of one of them.

- How to apply this result?
 - If \(U \rightarrow V \) holds over R and violates a BCNF definition, the decomposition into \(UV \) and \(R - V \) is lossless-join.
Dependency Preserving Decomposition

- **Contracts** \((contractid, supplierid, projectid, deptid, partid, qty, value)\), CSJDQPV, with FDs:
 - C is key.
 - JP \(\rightarrow\) C: a project buys a given part using a single contract.
 - SD \(\rightarrow\) P: a department buys at most one part from a supplier.

- What are the keys? Which normal form is it in?
 - C, JP, SDJ. 3NF.

- Lossless-join BCNF decomposition: CSJDQV, SDP
 - Problem: Checking JP \(\rightarrow\) C requires an assertion (using join)!
Dependency Preserving Decomposition

- The projection of a FD set F onto a decomposed reln R_1:
 - all $U \rightarrow V$ s.t. (a) U, V are both in R_1, (b) $U \rightarrow V$ is in closure F^+.
 - $F_{R_1} = F^+_R$

- Decomposition of R into R_1, R_2 is dependency preserving if
 $$(F_{R_1} \cup F_{R_2})^+ = F^+$$

- Important to consider F^+ (not F!) in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?
Decomposition into BCNF

- Relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into $R_1 = R - Y$ and $R_2 = XY$.
 - For each R_i, compute F_{R_i} and check \textit{if it is in BCNF}.
 - If not, pick a FD violating BCNF and keep composing R_i.

- Repeated application of this process yields a \textit{lossless join} decomposition into \textit{BCNF} relations.
Steps of BCNF Decomposition

- Contracts(CSJDPQV), key C, JP → C, SD → P, J → S.
 1. **Keys.** C, JP, DJ.
 2. **Normal form.** Not in BCNF or 3NF; SD → P and J → S violate BCNF.
 3. **Decomposition.** To deal with SD → P, decompose into SDP, CSJDQV.
 - **SDP** is in BCNF. But CSJDQV is not because:
 1. **Projection of FDs and keys.** Projection of FDs: keys C and DJ, J → S.
 2. **Normal form.** Not BCNF; J → S violates BCNF.
 3. **Decomposition.** For J → S, decompose CSJDQV into JS and CJDQV.
 - **JS** is in BCNF. So is **CJDQV**.

- If several FDs violate BCNF, the order of "dealing with" them could lead to very different sets of relations!
BCNF and Dependency Preservation

Is a *lossless-join BCNF* decomposition *dependency-preserving*?
- CSJDPQV with key C, JP → C, SD → P and J → S.
- CSJDPQV → SDP, JS and CJDQV
- What about JP → C?
- Adding JPC as a new relation to preserve JP → C introduces redundancy across relations.
- If we also have J → C, JPC is not in BCNF.

In general, there may **not** exist a *lossless join, dependency-preserving* decomposition into BCNF.
- But there is always a *lossless join, dependency-preserving* decomposition into 3NF (more see the textbook)…
Guidelines on Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs.
- If a relation is not in BCNF, try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a dependency preserving decomposition into BCNF is not possible, consider decomposition into 3NF.
 - Decompositions should be carried out while keeping performance requirements in mind.