Outline

- Relational Model
- Formal Query Languages
 - Relational Algebra
 - Relational Calculus
 - Language Theory
Query Languages

- The three languages we consider:
 - Relational Algebra (RA)
 - Relational Calculus (RC)
 - Structured Query Language (SQL)
Find sailors rated > 7 who have reserved boat #103

Relational Algebra:

\[
\pi_{\text{sname}}((\sigma_{\text{bid}=103} \text{Reserves}) \bowtie (\sigma_{\text{rating}>7} \text{Sailors}))
\]

Relational Calculus:

\[
\{ X_{\text{sname}} \mid \exists X_{\text{sid}}, X_{\text{rating}}, X_{\text{age}} \text{Sailors}(X_{\text{sid}}, X_{\text{sname}}, X_{\text{rating}}, X_{\text{age}}) \land X_{\text{rating}}>7 \\
\land \exists X_{\text{bid}}, X_{\text{day}} \text{Reserves}(X_{\text{sid}}, X_{\text{bid}}, X_{\text{day}}) \land X_{\text{bid}}=103 \}
\]

SQL:

```
SELECT  sname 
FROM     Sailors S, Reserves R 
WHERE  S.sid=R.sid and s.rating>7 and R.bid = '103';
```

3. Final projection
1. Implicit cross product
2. Selection on the results of cross product
Unsafe Queries, Expressive Power

- **Unsafe** queries in calculus:
 - some queries can have an infinite number of answers.
 - e.g., \([S] \rightarrow (S \notin \textit{Sailors}) \)

- Equivalence between RA and Safe RC

Theorem:* every query that can be expressed in *relational algebra* can be expressed as a *safe query in relational calculus*; the converse is also true.
Query Language Classes

Recursive Queries

First Order Queries

Conjunctive Queries

Algebra Logic SQL

RA (safe) RC SFW +
UNION, EXCEPT
no aggregation
Query Language Classes

Recursive Queries

First Order Queries

Conjunctive Queries

Algebra Logic SQL

RA (safe) RC SFW + UNION, EXCEPT no aggregation

RA: \(\sigma, \pi, \times \) Single datalog rule SdFW no aggregation
Conjunctive Queries (CQ)

- A subset of FO queries (i.e., less expressive).
- CQs have “better” theoretical properties than arbitrary queries.
- Query optimizer handles CQs the best (it tries to)
 - flatten a nested query to a single CQ
 - break a large query into many CQs
CQ in Rule-based (Datalog) Notation

- **R**: Extensional database (EDB) -- stored
- **P**: Intentional database (IDB) -- computed
Find sailors who have reserved boat #103

\[P(x, z) \leftarrow R_1(x, y) \& R_2(y, z) \]

\[P(X_{\text{sname}}) \leftarrow \text{Sailors}(X_{\text{sid}}, X_{\text{sname}}, X_{\text{rating}}, X_{\text{age}}) \& \text{Reserves}(X_{\text{sid}}, 103, X_{\text{day}}) \]
Properties of CQs

❖ Satisfiability
 ▪ A query Q is *satisfiable* if there exists at least one database instance D such that $Q(D)$ is non-empty.
 ▪ Theorem: *Every CQ is satisfiable.*

❖ Monotonicity
 ▪ A query Q is *monotonic* if for two database instances D_1 and D_2, $D_1 \subseteq D_2$ implies $Q(D_1) \subseteq Q(D_2)$.
 ▪ Theorem: *Every CQ is monotonic.*
Consequence of Monotonicity

SELECT MIN (S.age) FROM Sailors S WHERE S.rating=10;

SELECT S.sname FROM Sailors S WHERE S.rating >= ALL (SELECT S2.rating FROM Sailors S2);

- Are these queries monotonic?
- Are they in the class of conjunctive queries?
Beyond First-Order Queries

Recursive Queries

First Order Queries

Conjunctive Queries

Algebra

Logic

SQL

RA

(safe) RC

SFW +
UNION, EXCEPT
no aggregation

RA:
σ, π, ×

Single
datalog
rule

S^{dFW}
no aggregation

RA:
Limitation of FO Queries

- Let $D = \{E(x,y)\}$ represent a graph
- Query $\text{path}(x,z) =$
 - all x,z such that there is a path from x to z.

- Inexpressibility

Theorem: Query $\text{path}(x,z)$ cannot be expressed in First Order (FO) queries.
Find all of Mary’s ancestors

<table>
<thead>
<tr>
<th>Parent</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>Joe</td>
</tr>
<tr>
<td>Joe</td>
<td>Alice</td>
</tr>
<tr>
<td>Joe</td>
<td>Bob</td>
</tr>
<tr>
<td>Alice</td>
<td>Mary</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Can we write a query in SQL?
SQL with Recursion

WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent AS anc, child AS desc
 FROM ParentOf)
UNION
((SELECT A.anc, P.child AS desc
 FROM Ancestor A, ParentOf P
 WHERE A.desc = P.parent))

SELECT anc
FROM Ancestor
WHERE desc = 'Mary';
Recursive Computation

Ancestor

<table>
<thead>
<tr>
<th>Anc</th>
<th>Desc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>Joe</td>
</tr>
<tr>
<td>Joe</td>
<td>Alice</td>
</tr>
<tr>
<td>Joe</td>
<td>Bob</td>
</tr>
<tr>
<td>Alice</td>
<td>Mary</td>
</tr>
</tbody>
</table>

ParentOf

<table>
<thead>
<tr>
<th>Parent</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>Joe</td>
</tr>
<tr>
<td>Joe</td>
<td>Alice</td>
</tr>
<tr>
<td>Joe</td>
<td>Bob</td>
</tr>
<tr>
<td>Alice</td>
<td>Mary</td>
</tr>
</tbody>
</table>

Base case:

- Mike: Joe
- Joe: Alice
- Joe: Bob
- Alice: Mary

Iter 1:

- Mike: Alice
- Mike: Bob
- Joe: Mary

Iter 2:

- Mike: Mary

Iter 3:

- { } reached fixed point

Query result:

- Alice: Mary
- Joe: Mary
- Mike: Mary
Recursion in Datalog

Ancestor(x,y) ← ParentOf(x,y)
Ancestor(x,z) ← Ancestor(x,y) & ParentOf(y,z)

AncestorOfMary(x) ← Ancestor(x, ‘Mary’)

Use of IDB in Body Implicit UNION
A More Complete Picture

<table>
<thead>
<tr>
<th>Recursive Queries</th>
<th>Algebra</th>
<th>Logic</th>
<th>SQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA + Fixed Point operator</td>
<td>Datalog (recursion)</td>
<td>Full SQL (recursion)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Order Queries</th>
<th>Algebra</th>
<th>Logic</th>
<th>SQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>(safe) RC</td>
<td>SFW + UNION, EXCEPT no aggregation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjunctive Queries</th>
<th>Algebra</th>
<th>Logic</th>
<th>SQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA: σ, π, \times</td>
<td>Single Datalog rule</td>
<td>S^dFW no aggregation</td>
<td></td>
</tr>
</tbody>
</table>
A Full Picture: see 601…

Complexity Hierarchy

- P
- "truly feasible"$
- NC$
- NC^2
- $\log(CFL)$
- SAC^1
- $\text{NSPACE}[\log n]$
- $\text{DSPACE}[\log n]$
- Regular
- NC^1
- ThC^0
- Logarithmic-Time Hierarchy
- AC^0