Schema Refinement and Normal Forms

Yanlei Diao
UMass Amherst
Consider an Example

- Consider relation obtained from **Hourly_Emps**:
 - Hourly_Emps\((ssn, name, lot, rating, hrly_wages, hrs_worked)\)
 - Denote the schema by listing all its attributes: SNLRWH
Example (Contd.)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- Rating (R) determines hourly wages (W):
 - **Redundant storage**
 - **Update**: Can we change W in just the 1st tuple of rating 8?
 - **Insertion**: Insert an employee without knowing the hourly wage for his rating? Insert the hourly wage for rating 10 with no employee?
 - **Deletion**: Delete all employees with rating 5.
Will Two Smaller Tables be Better?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Hourly_Emps2

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Wages

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
The Evils of Redundancy

- Redundant storage causes several operation anomalies:
 - Insert/delete/update anomalies

- Functional dependencies, a new type of integrity constraint, can be used to identify schemas with such problems.
 - IC’s we have seen: attribute constraints, key constraints, foreign key constraints, general constraints
 - A new type of IC: functional dependencies
Functional Dependencies (FDs)

- A **functional dependency** $X \rightarrow Y$ holds over relation R if:
 - X and Y are two sets of attributes of R;
 - \forall allowable instance r of R:
 \[t_1 \in r, t_2 \in r, \pi_X(t_1) = \pi_X(t_2) \text{ implies } \pi_Y(t_1) = \pi_Y(t_2) \]
- An FD holds for **all** allowable instances of a schema.
- Key constraint is a special form of FD:
 - K is a candidate key for R means that $K \rightarrow R$.
 - $K \rightarrow R$ does not require K to be *minimal*!
FDs in the Hourly_Emps Example

- **Hourly_Emps**\((ssn, name, office, rating, hrly_wages, hrs_worked)\)
 - Denoted by SNLRWH

- Some FDs on Hourly_Emps:
 - \(ssn\) is the key: \(S \rightarrow SNLRWH\)
 - \(rating\) determines \(hrly_wages\): \(R \rightarrow W\)
Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - \(\text{ssn} \rightarrow \text{did}, \text{did} \rightarrow \text{building} \) implies \(\text{ssn} \rightarrow \text{building} \)

- Given a set of FDs \(F \), \textit{closure of } \(F \) (\(F^+ \)) is the set of all FDs that are implied by \(F \).
 - All FDs in \(F^+ \) hold over the relation \(R \).
Axioms and Rules

- Armstrong’s Axioms (X, Y, Z are sets of attributes):
 - **Reflexivity**: If $X \subseteq Y$, then $Y \rightarrow X$
 - **Augmentation**: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- A few additional rules (that follow from AA):
 - **Union**: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - **Decomposition**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

- Computing the closure F^+ using the axioms/rules:
 - Compute for all FD’s.
 - Size of closure is exponential in number of attrs!
Attribute Closure

- What if we just want to check if a given FD $X \rightarrow Y$ is in F^+?
- Simple algorithm for attribute closure X^+:
 - $X^+ := \{X\}$
 - DO if there is $U \rightarrow V$ in F, s.t. $U \subseteq X^+$, then $X^+ = X^+ \cup V$
 UNTIL no change
- Check if a given FD $X \rightarrow Y$ is in F^+:
 - Simply check if $Y \subseteq X^+$.

Does $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D \rightarrow E\}$ imply $A \rightarrow E$?
- Is $A \rightarrow E$ in the closure F^+?
- Equivalently, is E in A^+?
Normal Forms

- **Role of FDs in detecting redundancy**: R(A,B,C)
 - *No FDs hold*: No redundancy here.
 - *Given A → B*: Two tuples have the same A value will have the same B value!

- **Normal forms**: If a reln does not have certain kinds of FDs, certain *redundancy-related problems* are known not to occur.
Boyce-Codd Normal Form (BCNF)

- Rewrite every FD in the form of $X \rightarrow A$, X is a set of attributes, A is a **single** attribute
 - Use the decomposition rule

- Reln R with FDs F is in **BCNF** if $\forall X \rightarrow A$ in F^+:
 1. $A \in X$ (called a **trivial** FD), or
 2. X is a **superkey** (i.e., contains a key) for R.

- In **BCNF**, the only non-trivial FDs are key constraints!
Can we infer the value marked by ‘?’?

- If \(X \rightarrow A \), then the relation is not in BCNF
- A reln in BCNF can’t have \(X \rightarrow A \)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y_1</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>y_2</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Relation in BCNF:

- Every field of every tuple records information that can’t be inferred using FD’s from other fields.
- *No redundancy can be detected using FDs!*