Analytics in Spark

Yanlei Diao

Slides Courtesy of Ion Stoica, Matei Zaharia, Brooke Wenig, Tim Hunter
What is Apache Spark?

1) Data abstraction: Resilient Distributed Datasets (RDDs)
 • Sets of objects partitioned & distributed across a cluster
 • Stored in RAM or on Disk

2) Parallel execution engine for big data
 • Implements BSP (Bulk Synchronous Processing) model

3) Automatic recovery based on lineage of bulk transformations

4) Unified analytics for SQL, ML, Graph, Statistical analysis…
1) Programming Model

Resilient distributed datasets (RDDs)

• *Immutable* collections *partitioned* across cluster that can be rebuilt if a partition is lost (*fault tolerant*)

• Partitioning can be based on a key in each record (using *hash* or *range partitioning*)

• Created by transforming data in stable storage using data flow operators (map, filter, group-by, …)

• Can be *cached* across parallel operations

Restricted shared variables

• Accumulators, broadcast variables
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split('t')(2))
cachedMsgs = messages.cache()
cachedMsgs.filter(_.contains("foo")).count
cachedMsgs.filter(_.contains("bar")).count
...
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split(\t)(2))
cachedMsgs = messages.cache()
cachedMsgs.filter(_.contains("foo")).count
cachedMsgs.filter(_.contains("bar")).count
...
```

**Result:** full-text search of Wikipedia in <1 sec (vs 20 sec for on-disk data)
RDD Operations

<table>
<thead>
<tr>
<th>Transformations</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(define a new RDD)</td>
<td>(return a result to driver)</td>
</tr>
<tr>
<td>map</td>
<td>reduce</td>
</tr>
<tr>
<td>filter</td>
<td>collect</td>
</tr>
<tr>
<td>sample</td>
<td>count</td>
</tr>
<tr>
<td>union</td>
<td>save</td>
</tr>
<tr>
<td>groupByKey</td>
<td>lookupKey</td>
</tr>
<tr>
<td>reduceByKey</td>
<td></td>
</tr>
<tr>
<td>join</td>
<td></td>
</tr>
<tr>
<td>cache</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

http://spark.apache.org/docs/latest/programming-guide.html
Transformations (define a new RDD)

**map**(func): Return a new distributed dataset formed by passing each element of the source through a function `func`.

**filter**(func): Return a new dataset formed by selecting those elements of the source on which `func` returns true.

**flatMap**(func): Similar to map, but each input item can be mapped to 0 or more output items (so `func` should return a Seq rather than a single item).

**mapPartitions**(func): Similar to map, but runs separately on each partition (block) of the RDD, so `func` must be of type `Iterator<T> => Iterator<U>` when running on an RDD of type T.

**sample**: Sample a fraction `fraction` of the data, with or without replacement, using a given random number generator seed.

**union**(otherDataset): Return a new dataset that contains the union of the elements in the source dataset and the argument.

**intersection**(otherDataset): Return a new RDD that is the intersection of elements in the source dataset and the argument.

**distinct**: Return a new dataset that contains the distinct elements of the source dataset.

**groupByKey**: When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs. **Note:** To perform an aggregation (such as a sum or average) over each key, using `reduceByKey` or `aggregateByKey` will yield much better performance.

**reduceByKey**(func): When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function `func`, which must be of type (V,V) => V.

**sort**([ascending]): When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order.

**join**(otherDataset): When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key.

**cogroup**(otherDataset): When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable<V>, Iterable<W>)) tuples.
**Actions (return a result to driver)**

`count()`: Return the number of elements in the dataset.

`collect()`: Return all the elements of the dataset as an array at the driver program.

`reduce(func)`: Aggregate the elements of the dataset using a function `func` (which takes two arguments and returns one). The function should be **commutative** and **associative** so that it can be computed correctly in parallel.

`take(n)`: Return an array with the first `n` elements of the dataset.

`takeSample(n)`: Return an array with a random sample of `num` elements of the dataset.

`saveAsTextFile(path)`: Write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Call `toString` on each element to convert it to a line of text in the file.

`saveAsObjectFile(path)`: Write the elements of the dataset in a simple format using Java serialization, which can then be loaded using `SparkContext.objectFile()`.

`lookupKey`
Multi-language Programming Interface

• Standalone programs can be written in any, but console is only Python & Scala
• **Python developers:** can stay with Python for both
• **Java developers:** consider using Scala for console (to learn the API)

Performance: Java / Scala will be faster (statically typed), but Python can do well for numerical work with NumPy
First Stop: SparkContext

Main entry point to Spark functionality
Created for you in Spark shells as variable sc
In standalone programs, you’d make your own

http://spark.apache.org/docs/latest/programming-guide.html
Creating RDDs

# Turn a local collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from storage systems such as local FS, HDFS, or S3
sc.textFile("file.txt")
sc.textFile("directory/*.txt")
sc.textFile("hdfs://namenode:9000/path/file")

# Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

Spark can read/write to any storage system / format that has a plugin for Hadoop!
- Examples: HDFS, S3, HBase, Cassandra, Avro, SequenceFile
- Reuses Hadoop’s InputFormat and OutputFormat APIs
APIs like SparkContext.textFile support filesystems, while SparkContext.hadoopRDD allows passing any Hadoop JobConf to configure an input source
Basic Transformations (Python)

```python
nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) # => {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # => {4}

Map each element to zero or more others
nums.flatMap(lambda x: range(0, x)) # => {0, 0, 1, 0, 1, 2}
```

Range object (sequence of numbers 0, 1, ..., x-1)
Basic Actions (Python)

```python
ums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
nums.saveAsTextFile("hdfs://file.txt")
```
Working with Key-Value Pairs

Spark’s “distributed reduce” transformations act on RDDs of key-value pairs

Python:   pair = (a, b)
          pair[0] # => a
          pair[1] # => b

Scala:    val pair = (a, b)
          pair._1 // => a
          pair._2 // => b

Java:     Tuple2 pair = new Tuple2(a, b); // class scala.Tuple2
          pair._1 // => a
          pair._2 // => b
Some Key-Value Operations (Python)

```
Some Key-Value Operations (Python)

import pyspark

sc = SparkContext()

pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])

pets.reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

pets.groupByKey()
=> {(cat, Seq(1, 2)), (dog, Seq(1))}

pets sortByKey()
=> {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements combiners on the map side
```
Example: Word Count (Python)

```python
counts = lines.flatMap(lambda line: line.split(" "))
 .map(lambda word: (word, 1))
 .reduceByKey(lambda x, y: x + y)
```

```
<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>or</td>
<td>1</td>
</tr>
<tr>
<td>not</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Multiple Datasets

visits = sc.parallelize([("index.html", "1.2.3.4"),
                        ("about.html", "3.4.5.6"),
                        ("index.html", "1.3.3.1")])

pageNames = sc.parallelize([("index.html", "Home"), ("about.html", "About")])

visits.join(pageNames)
# ("index.html", ("1.2.3.4", "Home"))
# ("index.html", ("1.3.3.1", "Home"))
# ("about.html", ("3.4.5.6", "About"))

visits.cogroup(pageNames)
# ("index.html", (Seq("1.2.3.4", "1.3.3.1"), Seq("Home")))
# ("about.html", (Seq("3.4.5.6"), Seq("About")))
Controlling the Level of Parallelism (Python)

All the pair RDD operations take an optional second parameter for number of tasks

```python
words.reduceByKey(lambda x, y: x + y, 5)
words.groupByKey(5)
visits.join(pageViews, 5)
```
2) Bulk Synchronous Processing (BSP) Model

In this classic model for designing parallel algorithms, computation proceeds in a series of *supersteps*:

- **Concurrent computation**: parallel processes perform local computation
- **Communication**: processes exchange data
- **Barrier synchronization**: when a process reaches the barrier, it waits until all other processes have reached the same barrier
Spark, as a BSP System

- RDD (processors)
- tasks
- Shuffle
- RDD (processors)
- stage (super-step)
- ...
Spark, as a BSP System

- All tasks in same stage run same operation,
- single-threaded, **deterministic** execution

**Immutable dataset**

**Barrier implicit** by data dependency such as group data by key
3) RDD Fault Tolerance

RDDs maintain *lineage* (like *logical logging* in Aries) that can be used to reconstruct lost partitions.

Ex: `cachedMsgs = textFile(...).filter(_.contains("error")) .map(_.split('	')(2)) .cache()`
Benefits of RDD Model

**Consistency** is easy due to **immutability** (no updates)

**Fault tolerance** is inexpensive (log **lineage** rather than replicating/checkpointing data)

Locality-aware scheduling of tasks on partitions

Despite being restricted, model seems applicable to a broad variety of applications
Apache Spark Properties

**Easy** to use: 2-5x less code than Hadoop MR
  - High level API’s in Python, Java, and Scala

**Fast**: up to 100x faster than Hadoop MR
  - Can exploit in-memory when available
  - Low overhead scheduling, optimized engine

**Unified** support for multiple workloads and data sources
3. Apache Spark’s Path to Unification
Apache Spark’s Path to Unification

Unified engine across data workloads and data sources
2009: State-of-the-art in Big Data

Apache Hadoop
- Large scale, flexible data processing engine
- Batch computation (e.g., *10s minutes to hours*)
- Open source

New requirements emerging
- *Iterative computations*, e.g., machine Learning
- *Interactive computations*, e.g., ad-hoc analytics
The Path to Unification

Iterative and interactive applications

Scala

Spark core
(RDD API)
The Path to Unification

Iterative and interactive applications

Spark core
(RDD API)

share data between stages via memory
The Path to Unification

Iterative and interactive applications

Spark core
(RDD API)

Cache data in memory
The Path to Unification

Iterative, interactive, and batch applications

- Spark core (RDD API)
- Shark (Hive SQL over Spark)
- Share same computation engine
- HQL

Spark core (RDD API)
The Path to Unification

Iterative, interactive, batch, and **streaming** applications

- **Shark** (Hive over Spark)
- **Spark Streaming**
- **Spark core** (RDD API)

**Share same computation engine and similar API**

**HQL**

**Scala**
The Path to Unification

Iterative, interactive, batch, and streaming applications

HQL

Shark (Hive over Spark)

Spark Streaming

Spark core (RDD API)

Scala

Java and Python language bindings
The Path to Unification

Iterative, interactive, batch, and streaming applications

HQL

Shark
(Hive over Spark)

Spark Streaming

MLlib

GraphX

Spark core
(RDD API)

ML and Graph libraries, sharing same execution engine
The Path to Unification

Iterative, interactive, batch, and streaming applications

- Spark core (RDD API)
- Spark SQL (Catalyst)
- Spark Streaming
- MLlib
- GraphX

New SQL engine and query optimizer (Catalyst)
The Path to Unification

Iterative, interactive, batch, and streaming applications

- Spark core (RDD API)
- Spark SQL (Catalyst)
- Spark Streaming
- MLlib
- GraphX
- SparkR
The Path to Unification

Iterative, interactive, batch, and streaming applications

SQL

SparkSQL  Structured Streams  MLlib  Graph Frames  SparkR

Spark core
(DataFrames API, Catalyst, RDD API)

Unify DataFrame and SQL across all libraries

Share not only execution engine but also query optimizer
DataFrame API

**DataFrame** logically equivalent to a relational table

Operators mostly relational with additional ones for statistical analysis, e.g., quantile, std, skew

Popularized by R and Python/pandas, languages of choice for Data Scientists
RDD

```python
pdata.map(lambda x: (x.dept, [x.age, 1]))
 .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]])
 .map(lambda x: [x[0], x[1][0] / x[1][1]])
 .collect()
```

DataFrame

```python
DataFrame(data.groupBy("dept").avg("age"))
```
DataFrames, a Unifying Abstraction

Make DataFrame declarative, unify DataFrame and SQL

DataFrame and SQL share same

• query optimizer, and
• execution engine

Tightly integrated with rest of Spark

• ML library takes DataFrames as input & output
• Easily convert RDDs ↔ DataFrames
Catalyst: under the hood

Every optimization automatically applies to SQL, and Scala, Python and R DataFrames
Today’s Apache Spark

Iterative, interactive, batch, and streaming applications

SQL
SparkSQL
Structured Streams
MLlib
Graph Frames
SparkR

Spark core
(DataFrames API, Catalyst, RDD API)
4. What does unification bring?
Unification Simplifies Data Processing

Big data pipeline before...

Need to stitch together a hodgepodge of systems
  • Difficult to manage, learn, and use
Unification Simplifies Data Processing

Big data pipeline after…

One API to learn, one system to manage and operate