Data Analytics Beyond OLAP

Prof. Yanlei Diao
OPERATIONAL DBs

DB 1 | DB 2 | DB 3

EXTRACT
TRANSFORM
LOAD
(ETL)

METADATA
STORE

DATA
WAREHOUSE

SUPPORTS

OLAP

DATA
MINING

INTERACTIVE DATA
EXPLORATION
Overview of Topics

- Data Mining and Knowledge Discovery in Databases
 - Association rule mining
 - Interesting visualizations

- Approximate Query Processing
 - Online aggregation: group by aggregation, wander join
 - Interactive SQL

- Interactive Data Exploration
 - Faceted search
 - Semantic windows
 - Explore by example
1. Association Rule Mining

Fast Algorithms for Mining Association Rules

Rakesh Agrawal and Ramakrishnan Srikant
VLDB '94
Motivation

• Example Rules:
 – 98% of customers who purchase tires get automotive services done
 – Customers who buy mustard and ketchup also buy burgers
 – Goal: find these rules from transactional data

• Rules help with decision making
 – E.g., store layout, buying patterns, add-on sales
Association Mining

DB of "Basket Data"

<table>
<thead>
<tr>
<th>TID</th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
</tr>
<tr>
<td>400</td>
<td>2 5</td>
</tr>
</tbody>
</table>

Association Rules

- \{1\} => \{3\}
- \{2,3\} => \{5\}
- \{2,5\} => \{3\}
- .
- .
- .
Associate Rules

<table>
<thead>
<tr>
<th>TID</th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
</tr>
<tr>
<td>400</td>
<td>2 5</td>
</tr>
</tbody>
</table>

Association Rules

- \(\{1\} \Rightarrow \{3\} \)
- \(\{2,3\} \Rightarrow \{5\} \)
- \(\{2,5\} \Rightarrow \{3\} \)

Association rule: X \(\Rightarrow \) Y

- X and Y are disjoint itemsets, called *antecedent* (LHS) and *consequent* (RHS)

- **Confidence**: c\% of transactions that contain X also contain Y (rule-specific)
- **Support**: s\% of all transactions contain both X and Y (relative to all data)

- **Goal**: find all rules that satisfy the confidence and support thresholds.
Support Example

<table>
<thead>
<tr>
<th>TID</th>
<th>Cereal</th>
<th>Beer</th>
<th>Bread</th>
<th>Bananas</th>
<th>Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Support *(Cereal)*
\[
\frac{4}{8} = 0.5
\]

Support *(Cereal => Milk)*
\[
\frac{3}{8} = 0.375
\]
Confidence Example

<table>
<thead>
<tr>
<th>TID</th>
<th>Cereal</th>
<th>Beer</th>
<th>Bread</th>
<th>Bananas</th>
<th>Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Confidence (Cereal => Milk) \[\frac{3}{4} = .75\]

Confidence (Bananas => Bread) \[\frac{1}{3} = .33333...\]
Apriori Algorithm and Notation

- \(\{i_1, i_2, \ldots, i_m\} \) be the set of literals, known as **items**
- \(\{ T_j \} \) is the set of transactions (database), where each transaction \(T_j \) is a set of items s.t.
 - Each transaction has a unique identifier TID
 - The size of an itemset is the number of items
 - Itemset of size \(k \) is a **k-itemset**
- Assume that items in an itemset are sorted in lexicographical order
General Strategy

- **Step I:** Find all itemsets with minimum support (min_sups)

<table>
<thead>
<tr>
<th>TID</th>
<th>items</th>
<th>support</th>
<th>itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
<td>0.25</td>
<td>{4}, {1,2}, {1,4}, {1,5}, {3,4},</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{1,3,4}, {1,2,3}, {1,2,5}, {1,3,5},</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{1,2,3,5}</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
<td>0.5</td>
<td>{1}, {1,3}, {2,3}, {3,5}, {2,3,5}</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
<td>0.75</td>
<td>{2}, {3}, {5}, {2,5}</td>
</tr>
</tbody>
</table>

- **Step II:** Generate rules from min_sup'ed itemsets

<table>
<thead>
<tr>
<th>support</th>
<th>confidence</th>
<th>rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>66%</td>
<td>{3}=>{1}, {3}=>{2}, {2}=>{3},</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{3}=>{5}, {5}=>{3}, {5}=>{2},</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{2}=>{3}, {5,2}=>{3}, {5,3}=>{2}</td>
</tr>
<tr>
<td>0.5</td>
<td>100%</td>
<td>{1}=>{3}, {5,3}=>{2}, {2,3}=>{5}</td>
</tr>
<tr>
<td>0.75</td>
<td>100%</td>
<td>{5}=>{2}, {2}=>{5}</td>
</tr>
</tbody>
</table>
Step I: Finding Minsup Itemsets

• What is the complexity of finding all subsets of items that satisfy the mini_sup s?

• The power set of the n literals!

• A new algorithmic framework based on anti-monotonicity:
 • For a frequent itemset, all of its subsets are also frequent
 • For an infrequent itemset, all of its supersets must be infrequent
 • Can be used to design efficient pruning of the search space.
Anti-monotonicity

- Adding items to an itemset never increases its support
- For a frequent itemset, all of its subsets are also frequent
- For an infrequent itemset, all of its supersets must be infrequent
Anti-monotonicity

- Adding items to an itemset never increases its support
- For a frequent itemset, all of its subsets are also frequent
- For an infrequent itemset, all of its supersets must be infrequent
Anti-monotonicity

- Adding items to an itemset never increases its support
- For a frequent itemset, all of its subsets are also frequent
- For an infrequent itemset, all of its supersets must be infrequent
Step I: Finding Minsup Itemsets

- **Anti-monotonicity:**

 Adding items to an itemset never increases its support

- **Apriori Algorithm:** Proceed inductively on itemset size

 1) Base case: Begin with all minsup itemsets of size 1 (L_1)
 2) Without peeking at the DB, generate candidate itemsets of size k (C_k) from L_{k-1}
 3) Remove candidate itemsets that contain unsupported subsets
 4) Further refine C_k using the database to produce L_k
Task 2) Guess Itemsets

- Naïve way:
 - Extend all itemsets with all possible items

- Apriori:
 2) Join L_{k-1} with itself, adding only a single, final item

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Itemset</th>
<th>Itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>${1\ 2\ 3}$</td>
<td>${1\ 2\ 3}$</td>
<td>${1\ 2\ 3\ 4}$</td>
</tr>
<tr>
<td>${1\ 2\ 4}$</td>
<td>${1\ 2\ 4}$</td>
<td>${1\ 3\ 4}$</td>
</tr>
<tr>
<td>${1\ 3\ 4}$</td>
<td>${1\ 3\ 4}$</td>
<td>${1\ 3\ 4}$</td>
</tr>
<tr>
<td>${1\ 3\ 5}$</td>
<td>${1\ 3\ 5}$</td>
<td>${1\ 3\ 5}$</td>
</tr>
<tr>
<td>${2\ 3\ 4}$</td>
<td>${2\ 3\ 4}$</td>
<td>${2\ 3\ 4}$</td>
</tr>
</tbody>
</table>
Task 3) Filter Itemsets

- **Apriori:**
 2) Join L_{k-1} with itself, adding only a single, final item
 3) Remove itemsets with an unsupported subset

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Itemset</th>
<th>Itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2 3}</td>
<td>{1 2 3}</td>
<td>{1 2 3}</td>
</tr>
<tr>
<td>{1 2 4}</td>
<td>{1 2 4}</td>
<td>{1 2 4}</td>
</tr>
<tr>
<td>{1 3 4}</td>
<td>{1 3 4}</td>
<td>{1 3 4}</td>
</tr>
<tr>
<td>{1 3 5}</td>
<td>{1 3 5}</td>
<td>{1 3 5}</td>
</tr>
<tr>
<td>{2 3 4}</td>
<td>{2 3 4}</td>
<td>{2 3 4}</td>
</tr>
</tbody>
</table>

(equal on first $k-2$ items)

Itemset

{1 2 3 4}
{1 3 4 5}
Task 4) Finalize k-Itemsets

- **Apriori:**
 2) Join \(L_{k-1} \) with itself, adding only a single, final item
 3) Remove itemsets with an unsupported subset
 4) Use the database to further refine \(C_k \)

- Count precisely the occurrence of each itemset in the dataset, to see if it is indeed larger than \(\text{min}_\text{sup} \)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2 3}</td>
<td>{1 2 3}</td>
</tr>
<tr>
<td>{1 2 4}</td>
<td>{1 2 4}</td>
</tr>
<tr>
<td>{1 3 4}</td>
<td>{1 3 4}</td>
</tr>
<tr>
<td>{1 3 5}</td>
<td>{1 3 5}</td>
</tr>
<tr>
<td>{2 3 4}</td>
<td>{2 3 4}</td>
</tr>
</tbody>
</table>

\(\triangleright \triangleright \) equal on first \(k-1 \) items

\[\text{min}_\text{sup} ? \]
Repeat for larger values of k

- **Apriori Algorithm**: Proceed inductively on itemset size

1) Base case: Begin with all minsup itemsets of size 1 (L_1)

2) Without peeking at the DB, generate candidate itemsets of size k (C_k) from L_{k-1}

3) Remove candidate itemsets that contain unsupported subsets

4) Further refine C_k using the database to produce L_k

repeat

until L_k is empty
General Strategy

- **Step I**: Find all itemsets with *minimum support* (min_sup s)

<table>
<thead>
<tr>
<th>TID</th>
<th>items</th>
<th>support</th>
<th>itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
<td>0.25</td>
<td>{4}, {1,2}, {1,4}, {1,5}, {3,4}, {1,3,4}, {1,2,3}, {1,2,5}, {1,3,5}, {1,2,3,5}</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
<td>0.5</td>
<td>{1}, {1,3}, {2,3}, {3,5}, {2,3,5}</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
<td>0.75</td>
<td>{2}, {3}, {5}, {2,5}</td>
</tr>
</tbody>
</table>

- **Step II**: Generate rules from *min_sup*’ed itemsets

<table>
<thead>
<tr>
<th>support</th>
<th>confidence</th>
<th>rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>66%</td>
<td>{3}=>{1}, {3}=>{2}, {2}=>{3}, {3}=>{5}, {5}=>{3}, {5}=>{2,3}, {3}=>{2,5}, {2}=>{3,5}, {5,2}=>{3}, {5,3}=>{2}</td>
</tr>
<tr>
<td>0.5</td>
<td>100%</td>
<td>{1}=>{3}, {5,3}=>{2}, {2,3}=>{5}</td>
</tr>
<tr>
<td>0.75</td>
<td>100%</td>
<td>{5}=>{2}, {2}=>{5}</td>
</tr>
</tbody>
</table>
Full Algorithm

Apriori{

 L1 = {large 1-itemsets}

 for (k = 2; Lk-1 != ∅; k++) { //Generate large k-itemsets

 //Step 1: generate candidate k-itemsets from large (k-1)-itemsets
 Ck = apriori-gen(Lk-1);

 //Step 2: count support of each candidate set
 forall transactions t in the database {

 Ct = subset(Ck, t); // Candidates from Ck contained in t
 forall candidates c in Ct

 c.count++;

 }

 Lk = {c in Ck | c.count >= minsup}

 }

 Answer = ∪k Lk

}
apriori-gen(Lk-1) {

 // Intuition: every subset of a large itemset must be large.
 // So combine almost-matching pairs of large (k-1)-itemsets,
 // and prune out those with non-large (k-1)-subsets.

 join:

 insert into Ck
 select p.item1, ..., p.itemk-1, q.itemk-1
 from Lk-1 p, Lk-1 q
 where p.item1 = q.item1 and ... and p.itemk-2 = q.itemk-2 and p.itemk-1 < q.itemk-1;

 prune:

 // delete itemsets such that some (k-1)-subset is not in Lk-1
 forall itemsets c in Ck

 forall (k-1)-subsets s of c

 if (s not in Lk-1) {

 delete c from Ck;
 break;

 }

 }
}
Overview of Topics

- Data Mining over Databases
 - Association rule mining
 - Interesting visualizations

- Approximate Query Processing
 - Online aggregation: group by aggregation, wander join
 - Interactive SQL

- Interactive Data Exploration
 - Faceted search
 - Semantic windows
 - Explore by example
2. Interesting Visualizations

SeeDB: efficient data-driven visualization recommendations to support visual analytics

Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, Neoklis Polyzotis
VLDB ’14
Visualization Recommendation

Given a dataset and a task, automatically produce a set of visualizations that are the most “interesting” given the task.
Space of Visualizations

For simplicity, assume a single table (star schema)

Visualizations = grp. by-aggregate queries

Vi = SELECT d, f(m)
 FROM table
 WHERE ___
 GROUP BY d

(d, m, f):
 dimension, measure, aggregate
Space of Visualizations

Vi = SELECT d, f(m)
 FROM table
 WHERE ___
 GROUP BY d

(d, m, f):
dimension, measure, aggregate
{d} : race, work-type, sex etc.
{m} : capital-gain, capital-loss, hours-per-week
{f} : COUNT, SUM, AVG
Key Questions

I. *Interestingness*: How do we determine if a visualization is interesting?
 - Utility Metric

II. *Scale*: How to make recommendations efficiently and interactively?
 - Optimizations
Deviation-based Utility Metric

An *interesting* visualization displays *a large deviation from a reference*.

Task: compare *unmarried* adults with *all adults*.

\[
V_1 = \text{SELECT } d, f(m) \text{ FROM table WHERE } \text{target} \text{ GROUP BY } d \\
V_2 = \text{SELECT } d, f(m) \text{ FROM table WHERE } \text{reference} \text{ GROUP BY } d
\]
An **interesting** visualization displays *a large deviation from a reference*.

Many metrics for computing distance between distributions:

\[D [\mathcal{P}(V_1), \mathcal{P}(V_2)] \]

- Earth mover’s distance
- L1, L2 distance
- K-L divergence

Any distance metric b/n distributions is OK!
Key Questions

I. **Interestingness**: How do we determine if a visualization is interesting?

 - Utility Metric

II. **Scale**: How to compute efficiently and interactively?

 - Need to search through different combinations of \((d, m, f)\):

 - dimension, measure, aggregate
 - \{d\} : race, work-type, sex etc.
 - \{m\} : capital-gain, capital-loss, hours-per-week
 - \{f\} : COUNT, SUM, AVG

 - Optimizations include: (i) shared execution of queries, (ii) early pruning of non top-k patterns
Extracting Top-K Insights from Multi-dimensional Data

Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, Dongmei Zhang. SIGMOD ’17

- Transformations (delta_prev, %, rank, etc.) of data and combinations
- Types of insights: point or shape
- Optimizations