Data Warehouses

Yanlei Diao

Slides Courtesy of R. Ramakrishnan and J. Gehrke
Introduction

- In the late 80s and early 90s, companies began to use their DBMSs for complex, interactive, exploratory analysis of historical data.

Operational Data
(purchase transactions: store, customer, products, sales, etc.)

Decision Making:
- how much of which products to order for which store?
- when to deliver the products?
- benefits of promotional offers?
Data Warehousing

- **Data:**
 - Integrated data spanning long time periods, often augmented with summary information.
 - Large volumes: several terabytes to petabytes common.

- **Queries:**
 - Interactive response time expected for complex queries.
 - Ad-hoc updates uncommon.

- **Data mining**
 - Automated procedure for insight discovery

![Diagram of Data Warehousing Process](image)
Data Warehouses [Chaudhuri & Dayal 97]

- A **data warehouse** (DW) is an organization-wide data repository, used for decision making
 - An integrated enterprise warehouse collects info about all subjects, e.g. customers, products, sales, assets, personnel.
 - The data is used to assist in decision making
 - e.g., how much of which products to order for which stores, when to deliver the products, the benefits of various promotional offers, etc.
 - Analytics is called **On-Line Analytic Processing** (OLAP).
 - OLAP tasks slowed down the *normal operation* of the company, called **On-Line Transaction Processing** (OLTP), leading to separation of DWs from operational DBs.
OLTP vs OLAP Databases

<table>
<thead>
<tr>
<th>OLTP / Operational / Production</th>
<th>OLAP / Data Warehouse / DSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate the business / Clerks</td>
<td>Diagnose the business / Managers</td>
</tr>
<tr>
<td>Short queries, small amts of data</td>
<td>Large queries, large amts of data</td>
</tr>
<tr>
<td>Current data</td>
<td>Current and historical data</td>
</tr>
<tr>
<td>Queries change data</td>
<td>Queries are mostly read-only</td>
</tr>
<tr>
<td>• Examples: customer inquiry, order entry</td>
<td>• OLAP, data mining, statistics, visualization, etc.</td>
</tr>
<tr>
<td>Legacy applications, heterogeneous databases</td>
<td>Opposite</td>
</tr>
<tr>
<td>Often distributed</td>
<td>Often integrated and centralized (Warehouse)</td>
</tr>
</tbody>
</table>
Overview of Topics

1. Introduction
 - Operational vs. Warehouse

2. Multidimensional Data
 - Data model & schema

3. Queries
 - OLAP Queries
 - CUBE Operator
 - Window Operator

4. Implementation Algorithms
 - Bitmap Index
 - MOLAP vs ROLAP

5. Materialized Views
 - View definition
 - Query answering using views
 - View selection

6. Constructing a Data Warehouse (ETL)
To support OLAP, warehouse data is often structured multidimensionally, as *measures* and *dimensions*.

- **Measure**: numeric attribute, e.g. sales amount, ROI.
- **Dimension**: attribute categorizing the measure, e.g. product, store, date of sale.

Star schema:

- The central *fact table* contains a foreign key for each dimension, plus an attribute for each measure.
- There will also be a *dimension table* for each dimension.
Example Multidimensional Design

This kind of schema, called a **star schema**, is very common in OLAP applications.

Is this a good design of the schema? It avoids redundant storage, but requires joins.
Dimension Hierarchies

- For each dimension, some of the attributes may be organized in a hierarchy:

 PRODUCT
 - category
 - pname
 - PID

 TIME
 - year
 - quarter
 - week
 - date

 LOCATION
 - state
 - city
 - ZIP
Star/Snowflake Schemas

Star schema

Order
- OrderNo
- OrderDate

Customer
- CustomerNo
- CustomerName
- CustomerAddress
- City

Salesperson
- SalespersonID
- SalespersonName
- City
- Quota

Product
- ProdNo
- ProductName
- ProductDescr
- Category
- CategoryDescr
- UnitPrice

Fact Table
- OrderNo
- CustomerNo
- SalespersonID
- ProdNo
- DateKey
- CityName
- Quantity
- TotalPrice

Date
- DateKey
- Date
- Month
- Year

City
- CityName
- State
- Country

Snowflake schema

Order
- OrderNo
- OrderDate

Customer
- CustomerNo
- CustomerName
- CustomerAddress
- City

Salesperson
- SalespersonID
- SalespersonName
- City
- Quota

Product
- ProdNo
- ProductName
- ProductDescr
- Category
- CategoryDescr
- UnitPrice

Category
- CategoryName
- CategoryDescr

Fact Table
- OrderNo
- CustomerNo
- SalespersonID
- ProdNo
- DateKey
- CityName
- Category
- Quantity
- TotalPrice

Date
- DateKey
- Date
- Month
- Year

City
- CityName
- State
- Country

Month
- Month
- Year

State
- State
- Country

Country
- Country
Star/Snowflake Schemas

- Why normalize?
 - Save space
 - Remove store redundancy and related anomalies
 - If fully normalized, it is a snowflake schema

- Why denormalize?
 - Performance benefits, e.g., avoiding joins

- Which is more important in Data Warehouses?
Examples of Multi-Dimensional Data

- **Purchase** (ProductID, StoreID, DateID, Amt)
 - Product(ID, SKU, size, brand)
 - Store(ID, Address, Sales District, Region, Manager)
 - Date (ID, Week, Month, Holiday, Promotion)

- **Claims** (ProvID, MemblID, ProcedureID, DateID, Cost)
 - Providers(ID, Practice, Address, ZIP, City, State)
 - Members(ID, Contract, Name, Address)
 - Procedure (ID, Name, Type)

- **Telecomm** (CustID, SalesRepID, ServiceID, DateID)
 - SalesRep(ID, Address, Sales District, Region, Manager)
 - Service(ID, Name, Category)
 - ...
MOLAP vs ROLAP

- **ROLAP**: Multidimensional data can be stored as a relation, called ROLAP systems.
 - The main relation, which relates dimensions to a measure (e.g., sales), is the fact table.
 - Each dimension has additional attributes in a dimension table.
 - E.g., Products(pid, locid, timeid, amt)
 - Fact tables are much larger than dimensional tables.

- **MOLAP**: Multidimensional data can be stored physically in a (disk-resident, persistent) array, called MOLAP systems.
Multidimensional Data Model

- Collection of numeric *measures*, which depend on a set of *dimensions*.
 - E.g., measure **Amt**, dimensions **Product** (key: pid), **Time** (timeid), and **Location** (locid).

```
<table>
<thead>
<tr>
<th>pid</th>
<th>timeid</th>
<th>locid</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>35</td>
</tr>
</tbody>
</table>
```

Slice locid=1 ➞

![Diagram of multidimensional data model](chart.png)
Overview of Topics

1. Introduction
 - Operational vs. Warehouse

2. Multidimensional Data
 - Data model & schema

3. Queries
 - OLAP Queries
 - CUBE Operator
 - Window Operator

4. Implementation Algorithms
 - Bitmap Index
 - MOLAP vs ROLAP

5. Materialized Views
 - View definition
 - Query answering using views
 - View selection

6. Constructing a Data Warehouse (ETL)
3. OLAP Queries (Ch 25.3)

- Influenced both by SQL and by spreadsheets.
- A common operation is to **aggregate** a measure over one or more dimensions.
 - Find total sales.
 - Find total sales for each city, or for each state.
 - Find top five products ranked by total sales.
OLAP Queries

- **Roll-up:** aggregates at increasingly coarser levels of a dimension hierarchy.
 - E.g., Given total sales by ZIP, we can roll-up to get sales by city, and then by state.
OLAP Queries

- **Drill-down**: aggregates at increasingly finer levels of dimensions.
 - E.g., Given total sales by state, can drill-down to compute total sales by city.
 - E.g., Can also drill-down on a different dimension to compute total sales of each state by product.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>category</td>
</tr>
<tr>
<td></td>
<td>city</td>
</tr>
<tr>
<td></td>
<td>ZIP</td>
</tr>
</tbody>
</table>
OLAP Queries

- **Pivoting:** aggregates on selected dimensions
 - E.g., Pivoting on State and Year yields the **cross-tabulation** as shown below

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>63</td>
<td>38</td>
<td>75</td>
<td>176</td>
</tr>
<tr>
<td>CA</td>
<td>81</td>
<td>107</td>
<td>35</td>
<td>223</td>
</tr>
<tr>
<td>Total</td>
<td>144</td>
<td>145</td>
<td>110</td>
<td>339</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pid</th>
<th>timeid</th>
<th>locid</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>35</td>
</tr>
</tbody>
</table>
OLAP Queries

- **Slicing and Dicing:** equality and range selections on one or more dimensions.

Slice pid=12 ➝

<table>
<thead>
<tr>
<th>pid</th>
<th>timeid</th>
<th>locid</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>35</td>
</tr>
</tbody>
</table>
Tableau Demo

- https://www.youtube.com/watch?v=pXYgsd9xOZI

- Note the many measures.
- Pivot sales on category and region.
- Clear date, pivot on product and drill down on subcategory.
- Add profit as another measure
- Change bars to circles
- Pivot on dates (columns)
Comparison with SQL Queries

- The cross-tabulation obtained by pivoting:

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>CA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>63</td>
<td>81</td>
<td>144</td>
</tr>
<tr>
<td>2008</td>
<td>38</td>
<td>107</td>
<td>145</td>
</tr>
<tr>
<td>2009</td>
<td>75</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>176</td>
<td>223</td>
<td>339</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pid</th>
<th>timeid</th>
<th>locid</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>35</td>
</tr>
</tbody>
</table>
The cross-tabulation obtained by pivoting can also be computed using a collection of SQL queries:

```
SELECT T.year, L.state, SUM(S.amt)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
GROUP BY T.year, L.state

SELECT T.year, SUM(S.amt)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

SELECT L.state, SUM(S.amt)
FROM Sales S, Location L
WHERE S.locid=L.locid
GROUP BY L.state

SELECT SUM(S.amt)
FROM Sales S
```
The CUBE Operator

- If there are \(k \) dimensions, we have \(2^k \) possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.

- \textbf{GROUP BY CUBE}(\text{pid, locid, timeid})
 - Equivalent to rolling up Sales on all eight subsets of the set \{\text{pid, locid, timeid}\}

```sql
SELECT grouping-list, \text{SUM}(S.amt)
FROM   Sales S
GROUP BY CUBE(grouping-list)
ORDER BY grouping-list
```
Cube Operator (cont’d)

- GROUP BY CUBE(pid, locid, timeid) -- SUM Sales
 - Equivalent to rolling up Sales on all eight subsets of \{pid, locid, timeid\}; each roll-up amounts to a query of the form:

  ```sql
  SELECT SUM(S. amt)
  FROM Sales S
  GROUP BY grouping-list
  ```

- The *lattice* of group-by operations

[Diagram showing the lattice of group-by operations with nodes for pid, locid, timeid, pid, locid, pid, timeid, locid, timeid, pid, locid, pid, timeid, locid, timeid, pid, locid, pid, locid, locid, timeid, timeid, ALL]
Overview of Topics

1. Introduction
 - Operational vs. Warehouse

2. Multidimensional Data
 - Data model & schema

3. Queries
 - OLAP Queries
 - CUBE Operator
 - Window Operator

4. Implementation Algorithms
 - Bitmap Index
 - MOLAP vs ROLAP

5. Materialized Views
 - Query answering using views
 - View maintenance
 - View selection

6. Constructing a Data Warehouse (ETL)

7. An example of data mining
 - Association rule mining
A. Relational Techniques

- ROLAP systems:
 - We know how to implement each group by: hashing or sorting
 - How do we implement the lattice?
 - Reuse group by results from the previous layer
 - Given multiple choices from the previous layer, choose one that gives the smallest cost
B. Array-based Algorithms for CUBE

- **MOLAP systems:**
 - Implement the lattice using a multi-dimensional array
 - Carefully walk through the array to compute all projected aggregates *in one pass* (or minimum number of passes) with minimal memory requirements

- An Array-Based Algorithm for Simultaneous Multidimensional Aggregates. Zhao, Deshpande, Naughton, ACM SIGMOD 1997.
1) Converting A Relation to Cube on Disk

- How do we construct a cube from a relation?
 - Data does not fit in memory
 - No bias towards a particular dimension. Sort by (locid, date)?
Converting A Relation to Array on Disk

- Chunking algorithm
 - Divide a n-dimensional array into smaller n-dimensional chunks, each of which fits in memory. Store each chunk as an object on disk.
2) A Simple Cubing Algorithm

- Compute each group by in a separate pass

- Given: cube of dimensions A,B,C. Compute: aggregates for BC.
- "Sweep a plane" through the A dimension, and bring the values into the BC plane. Do this in a chunk-wise fashion.
- This uses only 1 chunk-size piece of memory at a time.
3) A Multi-Way Array Algorithm

- Compute all sub-aggregates in one pass of the disk-based cube, using minimum memory.
 - *Dimension Order*, O = (D_{j1}, D_{j2}, ..., D_{jn}), is an ordering on the dimensions corresponding to a "row major" traversal of chunks

 - ABC in the example below.

 - |Di| = size of dimension i
 - |Ci| = size of chunk for dimension i
 - |Ci| << |Di| in general
Multi-Way Array Algorithm (cont’d)

- Dimension order determines memory requirements:
 - BC values require 1 chunk BC each to aggregate away the A's
 - AC values require 4 chunks ACs each to aggregate away the B's
 - AB values require 16 chunks ABs each to aggregate away the C's
 - If a unit cell size is u, chunk size of dimension X is X_c, and dimension size of Y is Y_d, we need
 \[|B_c| |C_c| u \ + \ |A_d| |C_c| u \ + \ |A_d| |B_d| u \]
 memory to do this simultaneously.
Multi-Way Array Algorithm (cont’d)

- Dimension order determines memory requirements:
 - If a unit cell size is u, chunk size of dimension X is X_c, and dimension size of Y is Y_d, we need
 $$|B_c| |C_c| u + |A_d| |C_c| u + |A_d| |B_d| u$$
 memory to do this simultaneously.
 - **Memory Rule**: to compute a projection on one dimension, use product of dimension sizes in the *ordering prefix* before the projected dimension, times the chunk sizes in the *ordering suffix* after projection.
 - It’s easier to aggregate away dimensions earlier in the dimension order.
Minimum Memory Spanning Tree

Minimum Memory Spanning Tree Algorithm (MMST)

- For each node in the lattice, choose the parent that requires the least memory during traversal, according to the Memory Rule.
 - That is, try to project an earlier dimension.
 - (Note: this depends on the dimension order.)
Minimum Memory Spanning Tree

Minimum Memory Spanning Tree Algorithm (MMST)

- For each node in the lattice, choose the parent that requires the least memory during traversal, according to the Memory Rule.
 - That is, try to project an earlier dimension.
 - (Note: this depends on the dimension order.)

- To project out more, use the same logic to go from \(k \) dimensions to \(k-1 \).
 - E.g. to compute \(A \) from \(AC \), need to look at \(|A_d| \) values simultaneously.
 - There’s a simple formula \(F \) for total memory requirements for MMST.

- What is the optimal dimension order?
 - Can be computed by optimizing the simple formula \(F \).
 - Turns out to be simple: order by increasing dimension size!
 - Memory need is independent of the size of the largest dimension (which is first aggregated away or becomes the suffix after projection).