Relational Query Optimization

Yanlei Diao
Overview of Query Evaluation

- **Query evaluation plan:** tree of *relational algebra* operators, with choice of algorithm for each operator.

- **Query optimization:** given a query, many plans are possible
 - Ideally, find the most efficient plan.
 - In practice, avoid worst plans in practice.
SQL Refresher

```
SELECT {DISTINCT} <list of columns>
FROM <list of relations>
{WHERE <list of "Boolean Factors">}
{GROUP BY <list of columns>}
{HAVING <list of Boolean Factors>}
{ORDER BY <list of columns>};
```

- **Query Semantics:**
 1. Take Cartesian product (a.k.a. cross-product) of relns in FROM, projecting only to those columns that appear in other clauses
 2. If a WHERE clause exists, apply all filters in it
 3. If a GROUP BY clause exists, form groups on the result
 4. If a HAVING clause exists, filter groups with it
 5. If an ORDER BY clause exists, make sure output is in right order
 6. If there is a DISTINCT modifier, remove duplicates
Basics of Query Optimization

- Convert selection conditions to **conjunctive normal form (CNF)**:
 - \((\text{day}<8/9/94 \, \text{OR} \, \text{bid}=5 \, \text{OR} \, \text{sid}=3) \, \text{AND} \, (\text{rname}=\text{'Paul'} \, \text{OR} \, \text{sid}=3)\)

- Interleave FROM and WHERE into an **operator tree for optimization**.
 - Query optimization largely works for Conjunctive Queries (only).

- Apply GROUP BY, HAVING, DISTINCT and ORDER BY at the end, pretty much in that order.

```
SELECT    {DISTINCT} <list of columns>
FROM       <list of relations>
{WHERE      <list of "Boolean Factors">}
{GROUP BY   <list of columns>
{HAVING     <list of Boolean Factors>}
{ORDER BY   <list of columns>};
```
Outline of topics

- Query plans and equivalences

- Query optimization issues
 - Plan space
 - Cost estimation
 - Plan search

- Handling nested queries

- Multi-objective optimization in Cloud Computing
Relational Algebra Tree

Expression in Relational Algebra (RA):

\[\pi_{\text{sname}} (\sigma_{\text{bid}=100 \land \text{rating} > 5} (\text{Reserves} \bowtie \bowtie_{\text{sid}=\text{sid}} \text{Sailors})) \]
Query Evaluation Plan

- **Query evaluation plan** extends an RA tree with:
 1. *access method* for each relation;
 2. *implementation method* for each other operator.

- What are the missed opportunities?
 - Selections could have been `pushed` earlier.
 - Use of indexes.
 - More efficient joins.
Relational Algebra Equivalences

- **Selections:** \(\sigma_{c_1 \land \ldots \land c_n}(R) \equiv \sigma_{c_1}(\ldots \sigma_{c_n}(R)) \) (Cascade)
 \(\sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_2}(\sigma_{c_1}(R)) \) (Commute)

- **Projections:**
 \(\pi_{a_1}(R) \equiv \pi_{a_1}(\ldots(\pi_{a_1,\ldots,a_n}(R))) \) (Cascade)

- **Joins:**
 \((R \bowtie S) \equiv (S \bowtie R) \) (Commute)

 \(R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T \) (Associative)

- **Show that:**
 \(R \bowtie (S \bowtie T) \equiv (T \bowtie R) \bowtie S \)
More Equivalences

- $\sigma_c(R \times S) \equiv R \bowtie_c S$

- $\sigma_c(R \bowtie S) \equiv \sigma_c(R) \bowtie S$, if c is only applied to R

- $\pi_a(\sigma_c(R)) \equiv \sigma_c(\pi_a(R))$ holds if σ only uses attributes retained by π

- For $\pi_b(R \bowtie_a S)$, we can ‘push’ π before \bowtie by retaining both the a attribute and the b attribute (if existent)

- But, aggregates do not commute with other operators.
Schema for Examples

Sailors (\textit{sid}: integer, \textit{sname}: string, \textit{rating}: integer, \textit{age}: real)
Reserves (\textit{sid}: integer, \textit{bid}: integer, \textit{day}: dates, \textit{rname}: string)

- Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Query Plan 1 (Selection Pushed Down)

- **Push selections below the join.**

- **Materialization vs. Pipelining:**
 - Materialize a temporary relation \(T \), if the next operator needs to scan \(T \) *multiple times*.
 - Pipelining: the opposite.

- **With 5 buffer pages, cost of plan:**
 - Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform distribution).
 - Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
 - **Sort-Merge join:** Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250).
 - Total = 4060 page I/Os.
Query Plan 2 (Different Join Method)

- Change the join method to **block nested loops join**.

- With 5 buffer pages, cost of plan:
 - Scan Reserves (1000) + write temp T1 (10 pages).
 - Scan Sailors (500) + write temp T2 (250 pages).
 - **BNL join**: join cost = 10+4*250.
 - Total cost = 2770.
Indexes

- A tree index matches (a conjunction of) terms if the attributes in the terms form a prefix of the search key.
 - Tree index on $<a, b, c>$
 - $a=5 \text{ AND } b=3$?
 - $a=5 \text{ AND } b>6$?
 - $b=3$?
Query Plan 3 (Using Indexes)

- **Selection using index**: clustered index on bid of Reserves.
 - Retrieve 100,000/100 = 1000 tuples
 - Clustering: read 1000/100 = 10 pages.

- Indexed NLJ: *pipeline* the outer and *index lookup* on sid of Sailors.
 - The outer: no need to materialize.
 - The inner: sid is a key; at most one match tuple, unclustered index OK.

- **Cost**: *(rough illustration, need more info. for precise calculation)*
 - Selection of Reserves tuples (~10 I/Os).
 - For each tuple, get matching Sailor tuple (1000*(2~3)).
 - Total = 2010~3010 I/Os.
Outline

- Query plans and equivalences

- Query optimization issues
 - Cost estimation
 - Plan space
 - Plan search

- Handling nested queries

- Multi-objective optimization in Cloud Computing
An SQL query is parsed into a collection of *query blocks*, and these are optimized one block at a time.

Nested blocks are usually treated as calls to a subroutine, made once per outer tuple. (*Optimizing nested blocks is advanced material not required in this class...*)
Given a query block, three main optimization issues:

- **Plan cost**: what is the cost of a given plan?
- **Plan space**: which plans are considered?
- **Search algorithm**: how do we search the plan space for the cheapest estimated plan?
- We will learn the design of **System R Optimizer**
(1) Cost Estimation

- For each plan considered, must estimate its cost.

- Estimate cost of each operation in a plan tree:
 - Depends on input cardinalities.
 - Depends on the method (sequential scan, index scan, join...)

- Estimate size of result for each operation in tree:
 - Use statistics about input relations.
 - Estimate the reduction factor (RF) / selectivity of each term, which reflects the impact of the term in reducing result size.

```
SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk
```
Statistics in System Catalog

- Statistics about each relation (R) and index (I):
 - Relation cardinality: # tuples (NTuples) in R
 - Relation size: # pages (NPages) in R
 - Index cardinality: # distinct values (NKeys) in I
 - Index size: # leaf pages (INPages) in I
 - Index height: # nonleaf levels (IHeight) of I
 - Index range: low/high key values (Low/High) in I
 - Number of distinct values in an attribute (NKeys)
 - Histogram for an attribute
Cost Estimates for Single-Relation Plans

- **Index I on primary key** matches selection:
 - Cost of lookup = $\text{Height}(I) + 1$ for a B+ tree, ≈ 1.2 for hash index
 - Cost of record retrieval = 1

- **Clustered index I** matching one or more selections:
 - Cost of lookup + product of RF’s of matching terms (RF-terms) * $(\text{INPages}(I) + \text{NPages}(R))$

- **Non-clustered index I** matching one or more selections:
 - Cost of lookup + RF-terms * INPages(I) + $\min(\text{RF-terms} \times \text{NTuples}(R), \text{NPages}(R))$

- **Sequential scan of file**: $\text{NPages}(R)$

- May add extra costs for GROUP BY, sorting, and duplicate elimination (if a query says DISTINCT)
Reduction Factors

- **Reduction factor (RF) or Selectivity** of each *term* reflects the impact of the *term* in reducing result size.
 - **Assumption 1**: uniform distribution of the values!
 - Term *col=value*: RF = 1/NKeys(I), if there is an index I on col.
 - Term *col>value*: RF = (High(I)-value)/(High(I)-Low(I))
 - Term *R.col1=S.col2*:
 1) If *R.col1* is a foreign key, *S.col2* is a primary key, then RF = 1/NTuples(S)
 2) Otherwise, RF = 1/MAX(NKeys(I1), NKeys(I2))
 - WLOG, NKeys(I1) < NKeys(I2)
 - Each value from *R*, which is supposed to be in the smaller index I1, has a matching value in *S* with the larger index I2.
 - Values in *S* are evenly distributed.
 - So each *R* tuple has NTuples(S)/NKeys(I2) matches, a RF of 1/NKeys(I2).

```sql
SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk
```
Illustration for $R.col1 = S.col2$

- Smaller index I_1
- Larger index I_2

- $R.col1$
- $S.col2$

- $NTuples(S)$
- $NKeys(I_2)$
Size Estimation & Reduction Factors

- **Reduction factor (RF) of all terms** = product of all RF’s

- **Result cardinality** = max_num_tuples * product of all RF’s.
 - max_num_tuples = the product of the cardinalities of relations in the FROM clause.
 - **Assumption 2**: terms are independent!
Rethinking of Assumption 1

- “Uniform distribution of values”: often causes highly inaccurate estimates
 - E.g., distribution of gender: male (40), female (4)
 - E.g., distribution of age:

<table>
<thead>
<tr>
<th>Age</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
</tr>
</tbody>
</table>

Nkeys = 15, count = 45.
Reduction factor of ‘age=14’: 1/15? 9/45=1/5!

- Histogram: approximates a data distribution
Equiwidth Histograms

Equiwidth Histograms: buckets of equal size.

<table>
<thead>
<tr>
<th>Bucket</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>8</td>
<td>4</td>
<td>15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>8/3</td>
<td>4/3</td>
<td>15/3</td>
<td>3/3</td>
<td>15/3</td>
<td></td>
</tr>
</tbody>
</table>

Still not accurate for value 14: 5/45=1/9

Distribution of age:

0 (2), 1 (3), 2 (3), 3 (1), 4 (2), 5 (1), 6 (3), 7 (8), 8 (4), 9 (2), 10 (0), 11 (1), 12 (2), 13 (4), 14 (9).

Nkeys = 15, count = 45.

Reduction factor of ‘age=14’ : 5/45=1/9!
Equidepth Histograms

Equidepth Histograms: equal counts across buckets.

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Count</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>9/4</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10/4</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10/2</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7/4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>9/1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Small errors for infrequent items: tolerable.

Now accurate for value 14: 9/45 = 1/5

Distribution of age:

0 (2), 1 (3), 2 (3), 3 (1), 4 (2),
5 (1), 6 (3), 7 (8), 8 (4), 9 (2),
10 (0), 11 (1), 12 (2), 13 (4), 14 (9).

Nkeys = 15, count = 45.

Reduction factor of ‘age=14’: 9/45 = 1/5!
Equidepth Histograms: equal counts across buckets.

<table>
<thead>
<tr>
<th>Bucket</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>9/4</td>
<td>10/4</td>
<td>10/2</td>
<td>7/4</td>
<td>9/1</td>
<td></td>
</tr>
</tbody>
</table>

- Favors frequent values.
- Representation:
 - Boundaries of k=5 buckets {0, 4, 8, 10, 14, 14}
 - Count of tuples and number of distinct values for each bucket

Small errors for infrequent items: tolerable.

Now accurate for value 14: 9/45=1/5
Equidepth Histograms: equal counts across buckets.

<table>
<thead>
<tr>
<th>Bucket</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>9/4</td>
<td>10/4</td>
<td>10/2</td>
<td>7/4</td>
<td>9/1</td>
<td></td>
</tr>
</tbody>
</table>

Small errors for infrequent items: tolerable.

Now accurate for value 14: 9/45=1/5

Algorithm to build a k-bucket histogram over R.a

- (Collect a sample of size m from R.a, e.g., reservoir sampling)
- Sort the original column or the sample by R.a
- Break the sorted list by equal count m/k, and find boundary values
Rethinking Assumption 2

- “Independence of predicates”: causes inaccurate estimates
 - E.g., Car DB: 10 makes, 100 models.
 - RF of make=‘honda’ and model=‘civic’
 - If independent, 1/10 * 1/100. In practice, much higher!

- Multi-dimensional histograms [PI’97, MVW’98, GKT’00]
 - Maintain counts and frequency in multi-attribute space.

- Dependency-based histograms [DGR’01]
 - Learn dependency between attributes and compute conditional probability \(P(\text{model}=\text{‘civic’} \mid \text{make}=\text{‘honda’}) \)
 - Can use graphical models…
(2) Plan Space

- For each query block, the plans considered are:
 - All *access methods*, for each reln in the FROM clause.
 - All *left-deep join trees*: all the ways to join the relns one-at-a-time, with the inner reln in the FROM clause.
 - Number of left-deep join trees for *N* relns?
 - All permutations of *N* relns: *N factorial*!

![Diagram of left-deep and bushy join trees](image-url)
Plan Space

For each block, the plans considered are:

- All access methods, for each reln in FROM clause.
- All left-deep join trees: all the ways to join the relns one-at-a-time, with the inner reln in the FROM clause.
 - All permutations of N relns: N factorial!
 - But avoid Cartesian products!
 - Join R, S, T with R.a = S.a and S.b = T.b. How many left-deep trees are valid?

- All join methods, for each join in the tree.
- Appropriate places for selections and projections.
(3) Plan Search

- As the number of joins increases, the number of alternative plans grows rapidly.

- System R: (1) use only left-deep join trees, (2) avoid Cartesian products.
 - Motivation: allow pipelined plans; intermediate results not written to temp files.
 - Not all left-deep trees are fully pipelined!
 - Sort-Merge join: at least sorting phase
 - Two-phase hash join: partitioning phase
Search Algorithm

- Left-deep join plans:
 - Differ in the *order* of relations, *access method* for each relation, *join method* for each join.
 - But may share **common prefixes**. Don’t enumerate all. Instead use…

- Dynamic Programming
 “a method for solving problems that exhibit the properties of *overlapping subproblems* and *optimal substructures*”

- What are the overlapping subproblems?
- What do optimal substructures mean?
An Example Star Schema

- **Dynamic Programming**
 “a method for solving problems that exhibit the properties of overlapping subproblems and optimal substructures”

- Find the best plans to access A, B, C, D individually
- Repeat this for 4 relation sets: join (A-B-C)-D, (A-B-D)-C, (A-C-D)-B; store the best for (A-B-C-D)

① This procedure is restricted by join predicates of A,B,C,D (i.e., left deep trees but avoiding Cartesian products).
② Number of plans enumerated ≠ Number of possible plans (N!)
System R: Enumeration of Left-Deep Plans

Enumerate with N passes (if N relations are joined):
- Pass 1: Find best 1-relation plan for each relation.
- Pass 2: Find best ways to join result of each 1-relation plan (as outer) to another relation. (All 2-relation plans.)
- ...
- Pass N: Find best ways to join result of a (N-1)-relation plan (as outer) to the N’ th relation. (All N-relation plans.)

For each subset of relations, retain only:
- cheapest unordered plan, and
- cheapest plan for each interesting order (order for final output or a subsequent op. using sorting) of the tuples.
A k-way ($k<N$) plan is not combined with an additional relation unless there is a join condition between them.

- Do it until all predicates in WHERE have been used up.
- That is, avoid cartesian products if possible.

ORDER BY, GROUP BY, aggregates etc. handled as a final step, using an `interestingly ordered’ plan, or an additional sorting, or hashing.
Complexity of Plan Search

- Enumeration of all left-deep plans for an n-way join: \(O(n!) \), where \(n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \) with a large \(n \).

- System R yields a better cost: consider a star join graph
 - \(R.a_1 = S_1.a_1 \)
 - \(R.a_2 = S_2.a_2 \)
 - ...
 - \(R.a_{n-1} = S_{n-1}.a_{n-1} \)

- Total number of plans considered?

- Max. number of plans stored in an intermediate pass?
PostgreSQL Query Plan

Query Plan Explanation

1. Query with Name Equality

```sql
explain select * from movies where name = 'Avatar';
```

QUERY PLAN

```
Index Scan using movies_name_year_key on movies  (cost=0.41..8.43  rows=1  width=43)
    Index Cond: ((name)::text = 'Avatar'::text)
```

2. Query with Name Less Than

```sql
explain select * from movies where name < 'Avatar';
```

QUERY PLAN

```
Bitmap Heap Scan on movies  (cost=128.29..573.81  rows=3081  width=43)
    Recheck Cond: ((name)::text < 'Avatar'::text)
    ->  Bitmap Index Scan on movies_name_year_key  (cost=0.00..127.52  rows=3081  width=0)
        Index Cond: ((name)::text < 'Avatar'::text)
```

3. Query with Direct Link Conditions

```sql
explain select D1.mid from directed D1, directed D2 where D1.pid < D2.pid and D1.mid = D2.mid;
```

QUERY PLAN

```
Hash Join  (cost=1215.40..4810.30  rows=25846  width=4)
    Hash Cond: (d1.mid = d2.mid)
    Join Filter: (d1.pid < d2.pid)
    ->  Seq Scan on directed d1  (cost=0.00..651.29  rows=45129  width=8)
    ->  Hash  (cost=651.29..651.29  rows=45129  width=8)
        ->  Seq Scan on directed d2  (cost=0.00..651.29  rows=45129  width=8)
```