Schema Refinement and Normal Forms

Yanlei Diao
UMass Amherst
Consider an Example

Consider relation obtained from \textbf{Hourly_Emps}:
- \textbf{Hourly_Emps}(\textit{ssn, name, lot, rating, hrly_wages, hrs_worked})
- Denote the schema by listing all its attributes: \textbf{SNLRWH}
Rating (R) determines hourly wages (W):

- **Redundant storage**
- **Update:** Can we change W in just the 1st tuple of rating 8?
- **Insertion:** Insert an employee without knowing the hourly wage for his rating? Insert the hourly wage for rating 10 with no employee?
- **Deletion:** Delete all employees with rating 5.
Will Two Smaller Tables be Better?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Hourly_Emps2

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Wages

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
The Evils of Redundancy

- Redundant storage causes several operation anomalies:
 - Insert/delete/update anomalies

- *Functional dependencies*, a new type of integrity constraint, can be used to identify schemas with such problems.
 - IC’s we have seen: attribute constraints, key constraints, foreign key constraints, general constraints
 - A new type of IC: *functional dependencies*
A functional dependency $X \rightarrow Y$ holds over relation R if:
- X and Y are two sets of attributes of R;
- \forall allowable instance r of R:
 $$t_1 \in r, t_2 \in r, \pi_X(t_1) = \pi_X(t_2) \text{ implies } \pi_Y(t_1) = \pi_Y(t_2)$$
- An FD holds for all allowable instances of a schema.
- Key constraint is a special form of FD:
 - K is a candidate key for R means that $K \rightarrow R$.
 - $K \rightarrow R$ does not require K to be minimal!
FDs in the Hourly_Emps Example

- **Hourly_Emps**(ssn, name, office, rating, hrly_wages, hrs_worked)
 - Denoted by SNLRWH

- Some FDs on Hourly_Emps:
 - *ssn* is the key: \(S \rightarrow SNLRWH \)
 - *rating* determines *hrly_wages*: \(R \rightarrow W \)
Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - \(ssn \rightarrow did, \ did \rightarrow building \) implies \(ssn \rightarrow building \)

- Given a set of FDs \(F \), **closure of \(F \) (\(F^+ \))** is the set of all FDs that are implied by \(F \).
 - All FDs in \(F^+ \) hold over the relation \(R \).
Axioms and Rules

- Armstrong’s Axioms (X, Y, Z are sets of attributes):
 - Reflexivity: If $X \subseteq Y$, then $Y \rightarrow X$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- A few additional rules (that follow from AA):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

- Computing the closure F^+ using the axioms/rules:
 - Compute for all FD’s.
 - Size of closure is exponential in number of attrs!
Attribute Closure

- What if we just want to check if a given FD $X \rightarrow Y$ is in F^+?
- Simple algorithm for attribute closure X^+:
 - $X^+ := \{X\}$
 - DO if there is $U \rightarrow V$ in F, s.t. $U \subseteq X^+$,
 then $X^+ = X^+ \cup V$
 UNTIL no change
- Check if a given FD $X \rightarrow Y$ is in F^+:
 - Simply check if $Y \subseteq X^+$.
- Does $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D \rightarrow E\}$ imply $A \rightarrow E$?
 - Is $A \rightarrow E$ in the closure F^+?
 - Equivalently, is E in A^+?
Normal Forms

- Role of FDs in detecting redundancy: R(A, B, C)
 - No FDs hold: No redundancy here.
 - Given A → B: Two tuples have the same A value will have the same B value!

- Normal forms: If a reln does not have certain kinds of FDs, certain redundancy-related problems are known not to occur.
Boyce-Codd Normal Form (BCNF)

- Rewrite every FD in the form of $X \rightarrow A$, X is a set of attributes, A is a **single** attribute
 - Use the decomposition rule

- Reln R with FDs F is in **BCNF** if $\forall X \rightarrow A$ in F^+:
 1. $A \in X$ (called a **trivial** FD), or
 2. X is a **superkey** (i.e., contains a key) for R.

- In BCNF, the only non-trivial FDs are key constraints!
Boyce-Codd Normal Form (contd.)

- Can we infer the value marked by ‘?’?
 - If $X \rightarrow A$, then the relation is not in BCNF
 - A reln in BCNF can’t have $X \rightarrow A$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y_1</td>
<td>a</td>
</tr>
<tr>
<td>x</td>
<td>y_2</td>
<td>?</td>
</tr>
</tbody>
</table>

- Relation in BCNF:
 - Every field of every tuple records information that can’t be inferred using FD’s from other fields.
 - *No redundancy can be detected using FDs!*
Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if \(\forall X \rightarrow A \) in \(F^+ \):
 1. \(A \in X \) (called a trivial FD), or
 2. \(X \) is a superkey for R, or
 3. \(A \) is part of some key for R (minimality of a key is crucial in the third condition).

- If R is in BCNF, obviously in 3NF.
Third Normal Form (contd.)

- If R is in 3NF, some *redundancy* is possible!
 - **Reserves** (Sailor, Boat, Date, Credit_card) with
 - S → C, C → S
 - Keys are SBD and CBD.
 - It is in 3NF.
 - But for each reservation of sailor S, same (S, C) is stored.
More on BCNF and 3NF

- 3NF is a weaker normal form than BCNF.
 - BCNF: no *redundancy* w.r.t. FDs. Not true for 3NF.
 - Possible to have *lossless-join, dependency-preserving* decomposition of R into 3NF. Not true for BCNF!

- To check if a reln R is in BCNF or 3NF, need to compute *all* the keys of R.

- To enforce FDs in BCNF or 3NF, declare key constraints and checks in CREATE TABLE.
 - *Reserves*(Sailor, Boat, Date, Credit_card) with

 \[S \rightarrow C, \ C \rightarrow S \]
Decomposing a Relation Scheme

- A *decomposition* of R breaks R into two or more relns s.t.
 - Each new reln contains a subset of the attributes of R.
 - Every attribute of R appears in at least one new reln.

- Decompositions should be used only when:
 - R has redundancy related problems (not in BCNF),
 - We can afford the joins in queries later.
Example Decomposition

- **Hourly_Emps (SNLRWH)**
 - FDs: $S \rightarrow SNLRWH$ and $R \rightarrow W$.
 - $R \rightarrow W$ violates 3NF.
 - And it causes repeated (R,W) storage.

- To fix this, create a relation RW, remove W from the main schema. $(SNLRWH) \rightarrow (SNLRH) \text{ and } (RW)$.
Lossless Join Decompositions

- Decomposition of R into R1 and R2 is lossless-join w.r.t. a set of FDs F if ∀ instance r that satisfies F:
 - \(r = \pi_{R1}(r) \Join \pi_{R2}(r) \)
- It is always true that \(r \subseteq \pi_{R1}(r) \Join \pi_{R2}(r) \).
 - A bad decomposition can cause \(r \subsetneq \pi_{R1}(r) \Join \pi_{R2}(r) \).
A Simple Test for Lossless Join

- Decomposition of R into R1 and R2 is lossless-join wrt F iff the F⁺ contains:
 - R₁ ∩ R₂ → R₁ or R₁ ∩ R₂ → R₂
 - Intersection of R₁ and R₂ is a (super) key of one of them.

- How to apply this result?
 - If U → V holds over R and violates a BCNF definition, the decomposition into UV and R - V is lossless-join.
Dependency Preserving Decomposition

- **Contracts** (Contractid, Supplierid, Projectid, Deptid, Partid, Qty, Value), CSJDQPV, with FDs:
 - C is key.
 - JP → C: a project buys a given part using a single contract.
 - SD → P: a department buys at most one part from a supplier.

- What are the keys? Which normal form is it in?
 - C, JP, SDJ. 3NF.

- Lossless-join BCNF decomposition: CSJDQV, SDP
 - Problem: Checking JP → C requires an assertion (using join)!
Dependency Preserving Decomposition

- The *projection* of a FD set \(F \) onto a decomposed reln \(R_1 \):
 - all \(U \rightarrow V \) s.t. (a) \(U, V \) are both in \(R_1 \), (b) \(U \rightarrow V \) is in closure \(F^+ \).
 - \(F_{R_1} = F^+_{R_1} \)

- Decomposition of \(R \) into \(R_1, R_2 \) is *dependency preserving* if
 \[
 (F_{R_1} \cup F_{R_2})^+ = F^+
 \]

- Important to consider \(F^+ \) *(not \(F \!\!\!\!\!\!\!\!\!\!\)*) in this definition:
 - ABC, \(A \rightarrow B, B \rightarrow C, C \rightarrow A \), decomposed into AB and BC.
 - Is this dependency preserving? Is \(C \rightarrow A \) preserved?
Decomposition into BCNF

- Relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into $R_1 = R - Y$ and $R_2 = XY$.
 - For each R_i, compute F_{R_i} and check if it is in BCNF.
 - If not, pick a FD violating BCNF and keep composing R_i.

- Repeated application of this process yields a lossless join decomposition into BCNF relations.
Steps of BCNF Decomposition

- Contracts(CSJDPQV), key C, JP → C, SD → P, J → S.
 1. **Keys and FDs.** Keys: C, JP, DJ. FDs: J → S.
 2. **Normal form.** Not in 3NF; SD → P and J → S violate BCNF.
 3. **Decomposition.** To deal with SD → P, decompose into SDP, CSJDQV.

- **SDP** is in BCNF. But CSJDQV is not because:
 1. **Projection of FDs and keys.** Projection of FDs: keys C and DJ, J → S.
 2. **Normal form.** Not BCNF; J → S violates BCNF.
 3. **Decomposition.** For J → S, decompose CSJDQV into JS and CJDQV.

- **JS** is in BCNF. So is **CJDQV**.

- If several FDs violate BCNF, the order of ``dealing with'' them could lead to very different sets of relations!
BCNF and Dependency Preservation

- Is a lossless-join BCNF decomposition dependency-preserving?
 - CSJDPQV with JP \rightarrow C, SD \rightarrow P and J \rightarrow S.
 - CSJDPQV \rightarrow SDP, JS and CJDQV
 - What about JP \rightarrow C?
 - Adding JPC as a new relation to preserve JP \rightarrow C introduces redundancy across relations and more joins
 - If we also have J\rightarrowC, JPC is not in BCNF.

- In general, there may not exist a lossless join, dependency-preserving decomposition into BCNF.
 - But there is always a lossless join, dependency-preserving decomposition into 3NF.