Analytics in Spark

Yanlei Diao

Slides Courtesy of Ion Stoica, Matei Zaharia, Brooke Wenig, Tim Hunter
2009: State-of-the-art in Big Data

Apache Hadoop
 • Open Source: HDFS, Hbase, MapReduce, Hive
 • Large scale, flexible data processing engine
 • **Batch computation** (e.g., 10s minutes to hours)

New requirements emerging
 • **Iterative computations**, e.g., machine learning
 • **Interactive computations**, e.g., ad-hoc analytics
Prior MapReduce Model

MapReduce model for clusters transforms data flowing from stable storage to stable storage, e.g., Hadoop:
How to Support ML Apps Better?

Iterative and interactive applications

Scala

Spark core
(RDD API)
How to Support Iterative Apps

Iterative and interactive applications

Spark core (RDD API)
How to Support Interactive Apps

Iterative and interactive applications

Cache data in memory

Spark core (RDD API)
Motivation for Spark

Acyclic data flow (MapReduce) is a powerful abstraction, but not efficient for apps that repeatedly reuse a working set of data:
- iterative algorithms (many in machine learning)
- interactive data mining tools (R, Excel, Python)

Spark makes working sets a first-class concept to efficiently support these apps
Spark - A Short History

Started at UC Berkeley in 2009

Open Source: 2010

Apache Project: 2013

Today: (arguably) most active big data project
2. Technical Summary of Spark
What is Apache Spark?

1) Parallel execution engine for big data
 - Implements **BSP** (Bulk Synchronous Processing) model

2) Data abstraction: **Resilient Distributed Datasets** (RDDs)
 - Sets of objects partitioned & distributed across a cluster
 - Stored in RAM or on Disk

3) Automatic recovery based on **lineage** of bulk transformations
1) Bulk Synchronous Processing (BSP) Model

In this classic model for designing parallel algorithms, computation proceeds in a series of **supersteps**:

- **Concurrent computation**: parallel processes perform local computation
- **Communication**: processes exchange data
- **Barrier synchronization**: when a process reaches the barrier, it waits until all other processes have reached the same barrier
Spark, as a BSP System
Spark, as a BSP System

- All tasks in same stage run same operation,
- single-threaded, deterministic execution

Immutable dataset

Barrier implicit by data dependency such as group data by key
2) Programming Model

Resilient distributed datasets (RDDs)

- Immutable collections partitioned across cluster that can be rebuilt if a partition is lost
- Partitioning can be based on a key in each record (using hash or range partitioning)
- Created by transforming data in stable storage using data flow operators (map, filter, group-by, …)
- Can be cached across parallel operations

Restricted shared variables

- Accumulators, broadcast variables
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split("\t")(2))
cachedMsgs = messages.cache()
cachedMsgs.filter(_.contains("foo")).count
cachedMsgs.filter(_.contains("bar")).count
...
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split('t')(2))
cachedMsgs = messages.cache()
cachedMsgs.filter(_.contains("foo")).count
cachedMsgs.filter(_.contains("bar")).count

Result: full-text search of Wikipedia in <1 sec (vs 20 sec for on-disk data)
```
RDD Operations

<table>
<thead>
<tr>
<th>Transformations (define a new RDD)</th>
<th>Actions (return a result to driver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>reduce</td>
</tr>
<tr>
<td>filter</td>
<td>collect</td>
</tr>
<tr>
<td>sample</td>
<td>count</td>
</tr>
<tr>
<td>union</td>
<td>save</td>
</tr>
<tr>
<td>groupByKey</td>
<td>lookupKey</td>
</tr>
<tr>
<td>reduceByKey</td>
<td></td>
</tr>
<tr>
<td>join</td>
<td>...</td>
</tr>
<tr>
<td>cache</td>
<td></td>
</tr>
</tbody>
</table>

Transformations (define a new RDD)

- **map(func)**: Return a new distributed dataset formed by passing each element of the source through a function `func`.
- **filter(func)**: Return a new dataset formed by selecting those elements of the source on which `func` returns true.
- **flatMap(func)**: Similar to map, but each input item can be mapped to 0 or more output items (so `func` should return a `Seq` rather than a single item).
- **mapPartitions(func)**: Similar to map, but runs separately on each partition (block) of the RDD, so `func` must be of type `Iterator<T> => Iterator<U>` when running on an RDD of type T.
- **sample**: Sample a fraction `fraction` of the data, with or without replacement, using a given random number generator seed.
- **union(otherDataset)**: Return a new dataset that contains the union of the elements in the source dataset and the argument.
- **intersection(otherDataset)**: Return a new RDD that is the intersection of elements in the source dataset and the argument.
- **distinct**: Return a new dataset that contains the distinct elements of the source dataset.
- **groupByKey**: When called on a dataset of (K, V) pairs, returns a dataset of (K, `Iterable<V>`) pairs. **Note**: To perform an aggregation (such as a sum or average) over each key, using `reduceByKey` or `aggregateByKey` will yield much better performance.
- **reduceByKey(func)**: When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function `func`, which must be of type `(V,V) => V`.
- **sort([ascending])**: When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order.
- **join(otherDataset)**: When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key.
- **cogroup(otherDataset)**: When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable<V>, Iterable<W>)) tuples.
Actions (return a result to driver)

- **count()**: Return the number of elements in the dataset.
- **collect()**: Return all the elements of the dataset as an array at the driver program.
- **reduce**(func): Aggregate the elements of the dataset using a function `func` (which takes two arguments and returns one). The function should be **commutative** and **associative** so that it can be computed correctly in parallel.
- **take**(n): Return an array with the first `n` elements of the dataset.
- **takeSample**(n): Return an array with a random sample of `num` elements of the dataset.
- **saveAsTextFile**(path): Write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Call `toString` on each element to convert it to a line of text in the file.
- **saveAsObjectFile**(path): Write the elements of the dataset in a simple format using Java serialization, which can then be loaded using SparkContext.objectFile().
- **lookupKey**
- **...**
RDD Operations

<table>
<thead>
<tr>
<th>Transformations</th>
<th>map(f : T ⇒ U) : RDD[T] ⇒ RDD[U]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>filter(f : T ⇒ Bool) : RDD[T] ⇒ RDD[T]</td>
</tr>
<tr>
<td></td>
<td>flatMap(f : T ⇒ Seq[U]) : RDD[T] ⇒ RDD[U]</td>
</tr>
<tr>
<td></td>
<td>sample(fraction : Float) : RDD[T] ⇒ RDD[T] (Deterministic sampling)</td>
</tr>
<tr>
<td></td>
<td>groupByKey() : RDD[(K, V)] ⇒ RDD[(K, Seq[V])]</td>
</tr>
<tr>
<td></td>
<td>reduceByKey(f : (V, V) ⇒ V) : RDD[(K, V)] ⇒ RDD[(K, V)]</td>
</tr>
<tr>
<td></td>
<td>union() : (RDD[T], RDD[T]) ⇒ RDD[T]</td>
</tr>
<tr>
<td></td>
<td>join() : (RDD[(K, V)], RDD[(K, W)]) ⇒ RDD[(K, (V, W))]</td>
</tr>
<tr>
<td></td>
<td>cogroup() : (RDD[(K, V)], RDD[(K, W)]) ⇒ RDD[(K, (Seq[V], Seq[W]))]</td>
</tr>
<tr>
<td></td>
<td>crossProduct() : (RDD[T], RDD[U]) ⇒ RDD[(T, U)]</td>
</tr>
<tr>
<td></td>
<td>mapValues(f : V ⇒ W) : RDD[(K, V)] ⇒ RDD[(K, W)] (Preserves partitioning)</td>
</tr>
<tr>
<td></td>
<td>sort(c : Comparator[K]) : RDD[(K, V)] ⇒ RDD[(K, V)]</td>
</tr>
<tr>
<td></td>
<td>partitionBy(p : Partitioner[K]) : RDD[(K, V)] ⇒ RDD[(K, V)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions</th>
<th>count() : RDD[T] ⇒ Long</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>collect() : RDD[T] ⇒ Seq[T]</td>
</tr>
<tr>
<td></td>
<td>reduce(f : (T, T) ⇒ T) : RDD[T] ⇒ T</td>
</tr>
<tr>
<td></td>
<td>lookup(k : K) : RDD[(K, V)] ⇒ Seq[V] (On hash/range partitioned RDDs)</td>
</tr>
<tr>
<td></td>
<td>save(path : String) : Outputs RDD to a storage system, e.g., HDFS</td>
</tr>
</tbody>
</table>

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.
Multi-language Programming Interface

- Standalone programs can be written in any, but console is only Python & Scala
- **Python developers:** can stay with Python for both
- **Java developers:** consider using Scala for console (to learn the API)

Performance: Java / Scala will be faster (statically typed), but Python can do well for numerical work with NumPy
Learning Spark

Easiest way: Spark interpreter (spark-shell or pyspark)

- Special Scala and Python consoles for cluster use

Runs in local mode on 1 thread by default, but can control with MASTER environment var:

```
MASTER=local    ./spark-shell       # local, 1 thread
MASTER=local[2] ./spark-shell      # local, 2 threads
MASTER=spark://host:port ./spark-shell # Spark standalone cluster
```
First Stop: SparkContext

Main entry point to Spark functionality
Created for you in Spark shells as variable `sc`
In standalone programs, you’d make your own

http://spark.apache.org/docs/latest/programming-guide.html
Creating RDDs

Turn a local collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile("file.txt")
sc.textFile("directory/*.txt")
sc.textFile("hdfs://namenode:9000/path/file")

Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

Spark can read/write to any storage system / format that has a plugin for Hadoop!
- Examples: HDFS, S3, HBase, Cassandra, Avro, SequenceFile
- Reuses Hadoop’s InputFormat and OutputFormat APIs
APIs like SparkContext.textFile support filesystems, while SparkContext.hadoopRDD allows passing any Hadoop JobConf to configure an input source
Basic Transformations (Python)

```
nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
squares = nums.map(lambda x: x*x)  # => {1, 4, 9}

# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0)  # => {4}

# Map each element to zero or more others
nums.flatMap(lambda x: range(0, x))  # => {0, 0, 1, 0, 1, 2}
```

Range object (sequence of numbers 0, 1, ..., x-1)
Basic Actions (Python)

```python
nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

# Return first K elements
nums.take(2) # => [1, 2]

# Count number of elements
nums.count() # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

# Write elements to a text file
nums.saveAsTextFile("hdfs://file.txt")
```
Spark’s “distributed reduce” transformations act on RDDs of key-value pairs

Python:
\[
\text{pair} = (a, b) \\
\text{pair}[0] \# \Rightarrow a \\
\text{pair}[1] \# \Rightarrow b
\]

Scala:
\[
\text{val pair} = (a, b) \\
\text{pair}._1 \quad // \Rightarrow a \\
\text{pair}._2 \quad // \Rightarrow b
\]

Java:
\[
\text{Tuple2 pair} = \text{new Tuple2}(a, b); \quad // \text{class scala.Tuple2} \\
\text{pair}._1 \quad // \Rightarrow a \\
\text{pair}._2 \quad // \Rightarrow b
\]
Some Key-Value Operations (Python)

```python
pets = sc.parallelize([('cat', 1), ('dog', 1), ('cat', 2)])
pets.reduceByKey(lambda x, y: x + y)
# => {('cat', 3), ('dog', 1)}
pets.groupByKey()
# => {('cat', Seq(1, 2)), ('dog', Seq(1))}
pets.sortByKey()
# => {('cat', 1), ('cat', 2), ('dog', 1)}
```

reduceByKey also automatically implements combiners on the map side
Example: Word Count (Python)

```python
lines = sc.textFile("hamlet.txt")
counts = lines.flatMap(lambda line: line.split(" "))
    .map(lambda word: (word, 1))
    .reduceByKey(lambda x, y: x + y)
```

Example:
- "to be or"
- "not to be"
Multiple Datasets

visits = sc.parallelize([("index.html", "1.2.3.4"),
 ("about.html", "3.4.5.6"),
 ("index.html", "1.3.3.1"))]

pageNames = sc.parallelize([("index.html", "Home"), ("about.html", "About"))

visits.join(pageNames)
("index.html", ("1.2.3.4", "Home"))
("index.html", ("1.3.3.1", "Home"))
("about.html", ("3.4.5.6", "About"))

visits.cogroup(pageNames)
("index.html", (Seq("1.2.3.4", "1.3.3.1"), Seq("Home"))
("about.html", (Seq("3.4.5.6"), Seq("About")))
Controlling the Level of Parallelism (Python)

All the pair RDD operations take an optional second parameter for number of tasks

```python
words.reduceByKey(lambda x, y: x + y, 5)
words.groupByKey(5)
visits.join(pageViews, 5)
```
3) RDD Fault Tolerance

RDDs maintain *lineage* (like *logical logging* in Aries) that can be used to reconstruct lost partitions

Ex: `cachedMsgs = textFile(...).filter(_.contains("error")) .map(_.split("\t")(2)) .cache()`
Benefits of RDD Model

Consistency is easy due to **immutability** (no updates)

Fault tolerance is inexpensive (log **lineage** rather than replicating/checkpointing data)

Locality-aware scheduling of tasks on partitions

Despite being restricted, model seems applicable to a broad variety of applications
3. Apache Spark’s Path to Unification
Apache Spark’s Path to Unification

Unified engine across data workloads and data sources

Streaming SQL ML Graph Batch ...
2009: State-of-the-art in Big Data

Apache Hadoop
- Large scale, flexible data processing engine
- Batch computation (e.g., 10s minutes to hours)
- Open Source

New requirements emerging
- Iterative computations, e.g., machine Learning
- Interactive computations, e.g., ad-hoc analytics
The Path to Unification

Iterative and interactive applications

Spark core (RDD API)
The Path to Unification

Iterative and interactive applications

Spark core
(RDD API)

share data between stages via memory
The Path to Unification

Iterative and interactive applications

Spark core (RDD API)

Cache data in memory
The Path to Unification

Iterative, interactive, and batch applications

- Spark core (RDD API)
- Shark (Hive SQL over Spark)
- HQL
- Scala

Share same computation engine
The Path to Unification

Iterative, interactive, batch, and **streaming** applications

- **HQL**
- **Shark** (Hive over Spark)
- **Spark** Streaming
- **Spark core** (RDD API)

- Share same computation engine and similar API

2013
The Path to Unification

Iterative, interactive, batch, and streaming applications

- HQL
- Shark (Hive over Spark)
- Spark Streaming
- Spark core (RDD API)
- Java and Python language bindings
The Path to Unification

Iterative, interactive, batch, and streaming applications

HQL

Spark core (RDD API)

Shark (Hive over Spark)

Spark Streaming

MLlib

GraphX

ML and Graph libraries, sharing same execution engine
The Path to Unification

Iterative, interactive, batch, and streaming applications

SQL

Spark SQL (Catalyst)

Spark Streaming

MLlib

GraphX

Spark core (RDD API)

New SQL engine and query optimizer (Catalyst)
The Path to Unification

Iterative, interactive, batch, and streaming applications

- Spark core (RDD API)
- SparkSQL (Catalyst)
- Spark Streaming
- MLlib
- GraphX
- SparkR

SQL
The Path to Unification

Iterative, interactive, batch, and streaming applications

Spark core
(DataFrames API, Catalyst, RDD API)

Share not only execution engine but also query optimizer

Unify DataFrame and SQL across all libraries

SQL

Spark SQL
Structured Streams
MLlib
Graph Frames
SparkR

Scala
Java
Python

2016
DataFrame API

DataFrame logically equivalent to a relational table

Operators mostly relational with additional ones for statistical analysis, e.g., quantile, std, skew

Popularized by R and Python/pandas, languages of choice for Data Scientists
```python
RDD

```
DataFrames, a Unifying Abstraction

Make DataFrame declarative, unify DataFrame and SQL

DataFrames and SQL share same
• query optimizer, and
• execution engine

Tightly integrated with rest of Spark
• ML library takes DataFrames as input & output
• Every optimization automatically applies to SQL, and Scala, Python and R DataFrames
Today’s Apache Spark

Iterative, interactive, batch, and streaming applications

- Spark core
 (DataFrames API, Catalyst, RDD API)

- SparkSQL
- Structured Streams
- MLlib
- Graph Frames
- SparkR

Languages:
- SQL
- Scala
- Java
- Python