Relational Query Optimization

Yanlei Diao

Slide Content Courtesy of R. Ramakrishnan, J. Gehrke, and J. Hellerstein
Overview of Query Evaluation

- **Query evaluation plan:** tree of *relational algebra* operators, with choice of algorithm for each operator.

- **Query optimization:** given a query, many plans are possible
 - Ideally, find the most efficient plan.
 - In practice, avoid worst plans in practice.
SQL Refresher

- **Query Semantics:**
 1. Take Cartesian product (a.k.a. cross-product) of relns in **FROM**, projecting only to those columns that appear in other clauses
 2. If a **WHERE** clause exists, apply all filters in it
 3. If a **GROUP BY** clause exists, form groups on the result
 4. If a **HAVING** clause exists, filter groups with it
 5. If an **ORDER BY** clause exists, make sure output is in right order
 6. If there is a **DISTINCT** modifier, remove duplicates
Basics of Query Optimization

Syntax

```sql
SELECT {DISTINCT} <list of columns>
FROM <list of relations>
{WHERE <list of "Boolean Factors">}
{GROUP BY <list of columns>}
{HAVING <list of Boolean Factors>}
{ORDER BY <list of columns>};
```

- Convert selection conditions to **conjunctive normal form (CNF):**
 -

 (day<8/9/94 OR bid=5 OR sid=3) AND (rname= ‘Paul ’ OR sid=3)

- Interleave FROM and WHERE into an **operator tree for optimization.**
 - Query optimization largely works for Conjunctive Queries (only).

- Apply GROUP BY, HAVING, DISTINCT and ORDER BY at the end, pretty much in that order.
Outline of topics

- Query plans and equivalences
- Query optimization issues
 - Plan space
 - Cost estimation
 - Plan search
- Handling nested queries
- Multi-objective optimization in Cloud Computing
Relational Algebra Tree:

```
SELECT  S.sname
FROM    Reserves R, Sailors S
WHERE  R.sid=S.sid AND
       R.bid=100 AND S.rating>5
```

Expression in Relational Algebra (RA):

\[\pi_{sname} (\sigma_{bid=100 \land rating>5} (\text{Reserves} \bowtie_{sid=sid} \text{Sailors})) \]
Query Evaluation Plan

- **Query evaluation plan** extends an RA tree with:
 1) *access method* for each relation;
 2) *implementation method* for each other operator.

- What are the missed opportunities?
 - Selections could have been `pushed’ earlier.
 - Use of indexes.
 - More efficient joins.
Relational Algebra Equivalences

- **Selections:** \(\sigma_{c_1 \land ... \land c_n}(R) \equiv \sigma_{c_1}(\ldots \sigma_{c_n}(R)) \) (Cascade)
 \[\sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_2}(\sigma_{c_1}(R)) \] (Commute)

- **Projections:** \(\pi_{a_1}(R) \equiv \pi_{a_1}(\ldots(\pi_{a_1,\ldots,a_n}(R))) \) (Cascade)

- **Joins:** \((R \bowtie S) \equiv (S \bowtie R) \) (Commutative)
 \[R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T \] (Associative)

- Show that: \(R \bowtie (S \bowtie T) \equiv (T \bowtie R) \bowtie S \)
More Equivalences

- $\sigma_c(R \times S) \equiv R \bowtie_c S$

- $\sigma_c(R \bowtie S) \equiv \sigma_c(R) \bowtie S$, if c is only applied to R

- $\pi_a(\sigma_c(R)) \equiv \sigma_c(\pi_a(R))$ holds if σ only uses attributes retained by π

- For $\pi_b(R \bowtie_a S)$, we can ‘push’ π before \bowtie by retaining both the a attribute and the b attribute (if existent)

But, aggregates do not commute with other operators.
Schema for Examples

Sailors \((sid: \text{integer}, sname: \text{string}, rating: \text{integer}, age: \text{real})\)
Reserves \((sid: \text{integer}, bid: \text{integer}, day: \text{dates}, rname: \text{string})\)

- Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Query Plan 1 (Selection Pushed Down)

- **Push selections below the join.**

- **Materialization vs. Pipelining:**
 - Materialize a temporary relation T, if the next operator needs to scan T multiple times.
 - Pipelining: the opposite.

- **With 5 buffer pages, cost of plan:**
 - Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform distribution).
 - Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
 - Sort-Merge join: Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250).
 - Total = 4060 page I/Os.
Query Plan 2 (Different Join Method)

- Change the join method to **block nested loops join**.

With **5 buffer pages**, cost of plan:
- Scan Reserves (1000) + write temp T1 (10 pages).
- Scan Sailors (500) + write temp T2 (250 pages).
- **BNL join**: join cost = 10+4*250.
- Total cost = 2770.
Indexes

- A **tree index** matches (a conjunction of) terms if the attributes in the terms form a **prefix** of the search key.
 - Tree index on \(<a, b, c>\)
 - \(a=5 \text{ AND } b=3\) ?
 - \(a=5 \text{ AND } b>6\) ?
 - \(b=3\) ?
Query Plan 3 (Using Indexes)

- **Selection using index**: clustered index on bid of Reserves.
 - Retrieve 100,000/100 = 1000 tuples
 - Clustering: read 1000/100 = 10 pages.

- Indexed NLJ: *pipeline* the outer and *index lookup* on sid of Sailors.
 - The outer: no need to materialize.
 - The inner: sid is a key; at most one match tuple, unclustered index OK.

- Cost:
 - Selection of Reserves tuples (~10 I/Os).
 - For each tuple, get matching Sailor tuple (1000*(2~3)).
 - Total = 2010~3010 I/Os.
Outline

- Query plans and equivalences

- **Query optimization issues**
 - Cost estimation
 - Plan space
 - Plan search

- Handling nested queries

- Multi-objective optimization in Cloud Computing
An SQL query is parsed into a collection of query blocks, and these are optimized one block at a time.

Nested blocks are usually treated as calls to a subroutine, made once per outer tuple. (Optimization is advanced material...)

SELECT S.sname
FROM Sailors S
WHERE S.age IN
 (SELECT MAX (S2.age)
 FROM Sailors S2
 GROUP BY S2.rating)

Outer block Nested block
Three Main Issues in Optimization

- Given a query block, three main optimization issues:
 - **Plan cost**: what is the cost of a given plan?
 - **Plan space**: which plans are considered?
 - **Search algorithm**: how do we search the plan space for the cheapest estimated plan?
 - We will learn the design of *System R Optimizer*
(1) Cost Estimation

- For each plan considered, must estimate its cost.

- Estimate cost of each operation in a plan tree:
 - Depends on input cardinalities.
 - Depends on the method (sequential scan, index scan, join...)

- Estimate size of result for each operation in tree:
 - Use statistics about input relations.
 - Estimate the reduction factor (RF) / selectivity of each term, which reflects the impact of the term in reducing result size.

```
SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk
```
Statistics in System Catalog

- Statistics about each relation (R) and index (I):
 - **Relation cardinality**: # tuples (NTuples) in R
 - **Relation size**: # pages (NPages) in R
 - **Index cardinality**: # distinct values (NKeys) in I
 - **Index size**: # leaf pages (INPages) in I
 - **Index height**: # nonleaf levels (IHeight) of I
 - **Index range**: low/high key values (Low/High) in I
 - **Number of distinct values** in an attribute (NKeys)
 - **Histogram** for an attribute
Cost Estimates for Single-Relation Plans

- **Index I on primary key** matches selection:
 - Cost of lookup = \(\text{Height}(I) + 1 \) for a B+ tree, \(\approx 1.2 \) for hash index
 - Cost of record retrieval = 1

- **Clustered index** I matching one or more selections:
 - Cost of lookup + product of RF’s of matching terms (RF-terms) * \(\text{INPages}(I) + \text{NPages}(R) \)

- **Non-clustered index** I matching one or more selections:
 - Cost of lookup + RF-terms * INPages(I) + min(RF-terms * NTuples(R), NPages(R))

- **Sequential scan** of file: \(\text{NPages}(R) \)

- May add extra costs for GROUP BY, sorting, and duplicate elimination (if a query says DISTINCT)
Reduction Factors

- **Reduction factor (RF) or Selectivity** of each term reflects the impact of the term in reducing result size.
 - **Assumption 1**: uniform distribution of the values!
 - Term col=value: RF = 1/NKeys(I), if there is an index I on col.
 - Term col>value: RF = (High(I)-value)/(High(I)-Low(I))
 - Term $R.col1=S.col2$:
 1) If $R.col1$ is a foreign key, $S.col2$ is a primary key, then RF = 1/NTuples(S)
 2) Otherwise, RF = 1/MAX(NKeys(I1), NKeys(I2))
 - WLOG, NKeys(I1) < NKeys(I2)
 - Each value from R, which is supposed to be in the smaller index I1, has a matching value in S with the larger index I2.
 - Values in S are evenly distributed.
 - So each R tuple has NTuples(S)/NKeys(I2) matches, a RF of 1/NKeys(I2).
Illustration for $R.col1 = S.col2$

Smaller index I1

Larger index I2

$NTuples(S)$

$NKeys(I2)$
Size Estimation & Reduction Factors

- **Reduction factor (RF)** of all terms = product of all RF’s

- **Result cardinality** = max_num_tuples * product of all RF’s.
 - max_num_tuples = the product of the cardinalities of relations in the FROM clause.
 - **Assumption 2**: terms are independent!
Rethinking of Assumption 1

- “Uniform distribution of values”: often causes highly inaccurate estimates
 - E.g., distribution of gender: male (40), female (4)
 - E.g., distribution of age:

Age	Count
0	2
1	3
2	3
3	1
4	2
5	1
6	3
7	8
8	4
9	2
10	0
11	1
12	2
13	4
14	9

 Nkeys = 15, count = 45.
 Reduction factor of ‘age=14’: 1/15? 9/45=1/5!

- Histogram: approximates a data distribution
Equiwidth Histograms: buckets of equal size.

Frequency: 8/3 4/3 15/3 3/3 15/3
Count: 8 4 15 3 15
Bucket: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Distribution of age:
0 (2), 1 (3), 2 (3), 3 (1), 4 (2),
5 (1), 6 (3), 7 (8), 8 (4), 9 (2),
10 (0), 11 (1), 12 (2), 13 (4), 14 (9).
Nkeys = 15, count = 45.
Reduction factor of ‘age=14’ : 9/45=1/5!
Equidepth Histograms: equal counts across buckets.

<table>
<thead>
<tr>
<th>Bucket</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>9/4</td>
<td>10/4</td>
<td>10/2</td>
<td>7/4</td>
<td>9/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>10/2</td>
<td>7/4</td>
<td>7</td>
<td>9</td>
<td>9/4</td>
<td>10/4</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>9/45=1/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equidepth Histograms

Small errors for infrequent items: tolerable.

Distribution of age:

0 (2), 1 (3), 2 (3), 3 (1), 4 (2),
5 (1), 6 (3), 7 (8), 8 (4), 9 (2),
10 (0), 11 (1), 12 (2), 13 (4), 14 (9).

Nkeys = 15, count = 45.

Reduction factor of ‘age=14’ : 9/45=1/5 !
Equidepth Histograms

Equidepth Histograms: equal counts across buckets.

<table>
<thead>
<tr>
<th>Bucket</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>9/4</td>
<td>10/4</td>
<td>10/2</td>
<td>7/4</td>
<td>9/1</td>
<td></td>
</tr>
</tbody>
</table>

- **Favors** frequent values.
- **Representation:**
 - Boundaries of k=5 buckets {0, 4, 8, 10, 14, 14}
 - Count of tuples and number of distinct values for each bucket

Small errors for infrequent items: tolerable.

Now accurate for value 14: 9/45=1/5
Equidepth Histograms: equal counts across buckets.

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Frequency</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9/4</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>10/4</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10/2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>7/4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9/1</td>
<td>9</td>
</tr>
</tbody>
</table>

Small errors for infrequent items: tolerable.

Now accurate for value 14: 9/45 = 1/5

- Algorithm to build a k-bucket histogram over R.a
 - (Collect a sample of size m from R.a, e.g., reservoir sampling)
 - Sort the original column or the sample by R.a
 - Break the sorted list by equal count m/k, and find boundary values
Reservoir Sampling

Example: Sample size 10

Suppose we see a sequence of items, one at a time. We want to keep ten items in memory, and we want them to be selected at random from the sequence. If we know the total number of items \(n \), then the solution is easy: select ten distinct indices \(i \) between 1 and \(n \) with equal probability, and keep the \(i \)-th elements. The problem is that we do not always know \(n \) in advance. A possible solution is the following:

- Keep the first ten items in memory.
- When the \(i \)-th item arrives (for \(i > 10 \)):
 - with probability \(10/i \), keep the new item (discard an old one, selecting which to replace at random, each with chance \(1/10 \))
 - with probability \(1 - 10/i \), keep the old items (ignore the new one)

So:

- when there are 10 items or fewer, each is kept with probability 1;
- when there are 11 items, each of them is kept with probability \(10/11 \); for the old items, that is \((1)(1/11 + (10/11)(9/10)) = 1/11 + 9/11 = 10/11 \)
- when there are 12 items, the twelfth item is kept with probability \(10/12 \), and each of the previous 11 items are also kept with probability \((10/11)(2/12 + (10/12)(9/10)) = (10/11)(11/12) = 10/12 \);
- by induction, it is easy to prove that when there are \(n \) items, each item is kept with probability \(10/n \).
Rethinking Assumption 2

- “Independence of predicates”: causes inaccurate estimates
 - E.g., Car DB: 10 makes, 100 models.
 - RF of make=‘honda’ and model=‘civic’
 - If independent, 1/10 * 1/100. In practice, much higher!

- Multi-dimensional histograms [PI’97, MVW’98, GKT’00]
 - Maintain counts and frequency in multi-attribute space.

- Dependency-based histograms [DGR’01]
 - Learn dependency between attributes and compute conditional probability $P(\text{model} = \text{‘civic’} \mid \text{make} = \text{‘honda’})$
 - Can use graphical models…
(2) Plan Space

- For each query block, the plans considered are:
 - All *access methods*, for each reln in the FROM clause.
 - All *left-deep join trees*: all the ways to join the relns one-at-a-time, with the inner reln in the FROM clause.
 - Number of left-deep join trees for N relns?
 - All permutations of N relns: \(N! \)!
Plan Space

- For each block, the plans considered are:
 - All access methods, for each reln in FROM clause.
 - All left-deep join trees: all the ways to join the relns one-at-a-time, with the inner reln in the FROM clause.
 - All permutations of N relns: N factorial!
 - But avoid Cartesian products!
 - Join R, S, T with R.a = S.a and S.b = T.b. How many left-deep trees are valid?
 - All join methods, for each join in the tree.
 - Appropriate places for selections and projections.
(3) Plan Search

- As the number of joins increases, the number of alternative plans grows rapidly.

- System R: (1) use only left-deep join trees, (2) avoid Cartesian products.
 - Motivation: allow pipelined plans; intermediate results not written to temp files.
 - Not all left-deep trees are fully pipelined!
 - Sort-Merge join: at least sorting phase
 - Two-phase hash join: partitioning phase
Search Algorithm

- Left-deep join plans:
 - Differ in the *order* of relations, *access method* for each relation, *join method* for each join.
 - But may share **common prefixes**. Don’t enumerate all. Instead use…

Dynamic Programming

“a method for solving problems that exhibit the properties of *overlapping subproblems* and *optimal substructures*”

- What are the overlapping subproblems?
- What do optimal substructures mean?
An Example Star Schema

- **Dynamic Programming**

 “a method for solving problems that exhibit the properties of *overlapping subproblems* and *optimal substructures*”

- Find the best plans to access A, B, C, D individually
- Repeat this for 4 relation sets: join (A-B-C)-D, (A-B-D)-C, (A-B-D)-C; store the best for (A-B-C-D)

① This procedure is restricted by join predicates of A,B,C,D (i.e., left deep trees but avoiding Cartesian products).
② Number of plans enumerated ≠ Number of possible plans (N!)
System R: Enumeration of Left-Deep Plans

- Enumerate with N passes (if N relations are joined):
 - Pass 1: Find best 1-relation plan for each relation.
 - Pass 2: Find best ways to join result of each 1-relation plan (as outer) to another relation. *(All 2-relation plans.)*
 - ...
 - Pass N: Find best ways to join result of a (N-1)-relation plan (as outer) to the N’th relation. *(All N-relation plans.)*

- For each subset of relations, retain only:
 - cheapest *unordered* plan, and
 - cheapest plan for each *interesting order* (order for final output or a subsequent op. using sorting) of the tuples.
A k-way ($k<N$) plan is not combined with an additional relation unless there is a join condition between them.

- Do it until all predicates in WHERE have been used up.
- That is, avoid cartesian products if possible.

ORDER BY, GROUP BY, aggregates etc. handled as a final step, using an `interestingly ordered’ plan, or an additional sorting, or hashing.
Complexity of Plan Search

- Enumeration of all left-deep plans for an n-way join: \(O(n!) \), where \(n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \) with a large \(n \).

- System R yields a better cost: consider a star join graph
 - \(R.a_1 = S_1.a_1 \)
 - \(R.a_2 = S_2.a_2 \)
 - \(... \)
 - \(R.a_{n-1} = S_{n-1}.a_{n-1} \)

- Total number of plans considered?
- Max. number of plans stored in an intermediate pass?
explain analyze
select paperid, authid
from paperauths, authors
where authors.id=authid;

QUERY PLAN
--
Hash Join (cost=55249.17..396912.22 rows=8997842 width=8)
 (actual time=563.063..4223.015 rows=8997872 loops=1)
 Hash Cond: (paperauths.authid = authors.id)
 -> Seq Scan on paperauths (cost=0.00..129792.42 rows=8997842 width=8)
 (actual time=0.035..645.836 rows=8997872 loops=1)
 -> Hash (cost=27500.41..27500.41 rows=1691341 width=4)
 (actual time=561.896..561.896 rows=1691341 loops=1)
 Buckets: 131072 Batches: 32 Memory Usage: 2895kB
 -> Seq Scan on authors (cost=0.00..27500.41 rows=1691341 width=4)
 (actual time=0.025..265.960 rows=1691341 loops=1)
Planning time: 1.516 ms
Execution time: 4461.836 ms
(8 rows)
Estimating Query Latency

Figure 3: A neural network for a simple join query
Overview of Cloud Computing
Multi-Objective Optimization
Multi-Objective Optimization

- MOO still has the substructure property, but loses the suboptimality problem.
 - See Example 1 in “Approximation Schemes for Many-Objective Query Optimization”
- As a result, the number of possible plans = the number of plans enumerated
- The complexity depends on the Catalan number.
 - See Section 5.2