Database Design and Implementation

CS 645

Database theory
Theory problems in databases

- Expressiveness of languages
- Complexity of languages
- Static analysis of queries (for optimization)
- Views
Theory problems in databases

Expressiveness of languages
- Any query in L1 can be expressed in L2

Complexity of languages
- Bounds on resources required to evaluate any query in language L

Static analysis of queries (for optimization)
- Given q in L: is it minimal?
- Given q1 and q2 in L: are they equivalent?

Views
Crash review of complexity classes

- **AC\(^0\)**
- **L (LOGSPACE)**
- **NL (NLOGSPACE)**
- **NC**
- **P (PTIME)**
- **NP**
- **PSPACE**
Crash review of complexity classes

- **AC\(^0\)**
 - Circuits of \(O(1)\) depth and polynomial size

- **L (LOGSPACE)**
 - Solvable in logarithmic (small) space

- **NL (NLOGSPACE)**
 - "YES" answers checkable in logarithmic space

- **NC**
 - Solvable efficiently (in polylogarithmic time) on parallel computers

- **P (PTIME)**
 - Solvable in polynomial time

- **NP**
 - "YES" answers checkable in polynomial time

- **PSPACE**
 - Solvable with polynomial memory
Rules of thumb

- Step 1: check if you can solve the problem “in that class”
- Step 2: if not, check if your problem “looks like” (is reducible from) the complete problem from the next class.
- Of interest: PTIME-complete are not efficiently parallelizable.
Complexity
Equivalence
Containment
Minimization
Semijoin reduction
Evaluation algorithm
Given a query Q and a database D, what is the complexity of computing Q(D)?

The answer depends on the query language:
- Relational algebra, calculus, datalog

Design tradeoff:
- High complexity → rich queries
- Low complexity → implemented efficiently
Complexity of query languages

Query Q, database D

- Data complexity
 - Fix Q, complexity $f(D)$
- Query complexity
 - Fix D, complexity $f(Q)$
- Combined complexity
 - Complexity $f(D,Q)$

Moshe Vardi
Conventions

- Complexity is usually defined for a decision problem
 - We study the complexity of Boolean queries

- Complexity usually assumes some encoding of the input
 - We encode instances using binary representation
Boolean queries

Definition: A Boolean query is a query that returns either true or false.

Non-Boolean

```
SELECT DISTINCT R.x, S.y
FROM     R, S
WHERE R.z = S.z
```

Q(x,y) :- R(x,z), S(z,y)
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

Boolean

```
SELECT DISTINCT ‘yes’
FROM     R, S
WHERE R.x = ‘a’ and R.z = S.z and S.y = ‘b’
```

Q :- R(x,z), S(z,y)
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
Answer() :- T(‘a’,’b’)

Database encoding

Encode \(\mathbf{D} = (D, R_1^D, \ldots, R_k^D) \) as follows:

- Let \(n = |ADom(D)| \)
- If \(R_i \) has arity \(k \), encode it as a string of \(n^k \) bits:
 - 0 means element \((a_1, \ldots, a_k) \notin R_i^D \)
 - 1 means element \((a_1, \ldots, a_k) \in R_i^D \)

\[
\begin{array}{|c|c|}
\hline
a & b \\
\hline
a & c \\
\hline
b & b \\
\hline
b & c \\
\hline
c & a \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
a & b & c \\
\hline
0 & 1 & 1 \\
\hline
0 & 1 & 1 \\
\hline
0 & 0 & 0 \\
\hline
\end{array}
\]

Column 1:
- \(a \) encoded as 0
- \(b \) encoded as 1
- \(c \) encoded as 1

Column 2:
- \(a \) encoded as 0
- \(b \) encoded as 1
- \(c \) encoded as 0
Data complexity

Fix a Boolean query Q in the query language. Determine the complexity of the following problem:

Given an input database instance

$$D = (D, R_1^D, \ldots, R_k^D)$$

check if $Q(D) = \text{true}$

This is also known as model checking problem: check if D is a model for Q.
What is the complexity of relational queries?

- AC^0
- L
- NL
- NC
- $PTIME$
- $PSPACE$
- all computable
Example

\(Q = \exists z. R(\text{`a',}z) \land S(z,\text{`b'}) \)

Prove that \(Q \) is in \(\text{AC}^0 \)

\[
\begin{array}{c|c|c|c}
R: & a & b & c \\
\hline
a & 0 & 1 & 1 \\
b & 0 & 1 & 1 \\
c & 1 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
S: & a & b & c \\
\hline
a & 0 & 0 & 1 \\
b & 1 & 1 & 0 \\
c & 1 & 0 & 1 \\
\end{array}
\]
Example

$$Q = \exists z. R('a', z) \land S(z, 'b')$$

Prove that Q is in AC^0

Circuit of depth 2

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

OR has n inputs
Each AND has 2 inputs
What is the complexity of relational queries?

All relational queries (expressible in RC) are in AC^0
What is the complexity of datalog queries?

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
Answer() :- T('a','b')
Datalog is not in AC^0

- Parity is not in AC^0
- We will reduce parity to the reachability problem

Given input $(x_1, x_2, x_3, x_4, x_5) = (0, 1, 1, 0, 1)$ construct the graph:

\[
\begin{align*}
T(x, y) & : R(x, y) \\
T(x, y) & : T(x, z), R(z, y) \\
\text{Answer}() & : T('a_1', 'b_6')
\end{align*}
\]

The # of 1s is odd iff Answer is true
Datalog is in PTIME

- Fix any Boolean datalog program P.
- Given D, check if $P(D) = \text{true}$ is in PTIME

Proof argument:
- If an IDB has arity k, then it will reach its fixpoint in at most n^k iterations.
Conjunctive Queries (CQ)

- A subset of FO (first order)
 - Less expressive

- Many queries in practice are conjunctive

- Some optimizers only handle CQs
 - Break larger queries into many CQs

- CQs have “better” theoretical properties than arbitrary queries
 Conjunctive Queries

- R: Extensional database (EDB) – stored
- P: Intentional database (IDB) – computed

$$P(x, z) : \neg R(x, y) \land R(y, z)$$
Conjunctive Queries

- When facts in the body are true, we infer the head.
- Consider all possible assignments of variables in the body.

\[P(x,z) :- R(x,y) \& R(y,z) \]

Variables: implicit conjunction
Head: \(P(x,z) \)
Body: \(R(x,y) \& R(y,z) \)
If: \(\exists \)
Conjunctive Queries

- A single datalog rule
- Equivalent to SELECT-DISTINCT-FROM-WHERE
- Select/project/join in RA
- Existential/conjunctive fraction of RC

Strictly speaking, we are not allowed to have non-equality selection predicates
Example

Find all employees having the same manager as ‘Smith’

\[
A(x) :\neg \text{ManagedBy('Smith',y)} \land \text{ManagedBy(x,y)}
\]

\[
\text{SELECT DISTINCT m2.name }
\text{ FROM ManagedBy m1, ManagedBy m2 }
\text{ WHERE m1.name = 'Smith' AND m1.manager = m2.manager}
\]
Properties of CQ

- **Satisfiability**
 - A query is satisfiable if there exists some input relation R such that $q(R)$ is non-empty
 - Every CQ is satisfiable

- **Monotonicity**
 - A query is monotonic if for each instance I, J over the schema, $I \subseteq J$ implies $q(I) \subseteq q(J)$
 - Every CQ is monotonic
Satisfiability

We can always generate satisfying EDB relations from the body of the rule

\[S(x,y,z) :- P(x,w) \land R(w,y,v) \land P(v,z) \]

\[
\begin{array}{c}
a b \\
b c d \\
d e \\
\end{array}
\]

\[
\begin{array}{c}
a c e \\
a b \\
d e \\
\end{array}
\]

\[
\begin{array}{c}
a b \\
b c d \\
\end{array}
\]
Monotonicity

\[\text{ans}(u) : \neg R_1(u_1) \land \ldots \land \neg R_n(u_n) \]

Consider 2 databases \(I, J \), s.t. \(I \subseteq J \)

Let \(t \in q(I) \)

For some substitution \(v : \)

\(v(u_i) \in I(R_i) \) for each \(i \).

\(t = v(u) \)

Since \(I \subseteq J \), \(v(u_i) \in J(R_i) \) for each \(i \).

So \(t \in q(J) \)
Consequence of monotonicity

This query is not monotone
Therefore, not CQ
It cannot be expressed as a simple SFW query

Q: Find all companies that make only products with price < 100!

```
SELECT DISTINCT C.cname
FROM Company C
WHERE 100 > ALL (SELECT price
                   FROM Product P
                   WHERE P.cid = C.cid)
```
Equivalence and containment

- Needed for a variety of static analysis tasks
 - Query optimization
 - Query rewriting using views
 - Testing for semijoin reductions
Definition: Queries q_1 and q_2 are equivalent if for every database D, $q_1(D) = q_2(D)$

Notation: $q_1 \equiv q_2$
Query containment

Definition: Query q_1 is contained in q_2 if for every database D, $q_1(D) \subseteq q_2(D)$

Notation: $q_1 \subseteq q_2$

Fact: $q_1 \subseteq q_2$ and $q_2 \subseteq q_1$ iff $q_1 \equiv q_2$

For the case of Boolean queries, containment is logical implication.
Examples

Is $q_1 \subseteq q_2$?

\begin{align*}
q_1(x) & : - R(x,u), R(u,'Smith') \\
q_2(x) & : - R(x,u), R(u,v)
\end{align*}

Yes
Is $q_1 \subseteq q_2$?

Yes

$q_1(x) :- R(x,u), R(u,v), R(v,w)$
$q_2(x) :- R(x,u), R(u,v)$
Examples

Is \(q_1 \subseteq q_2 \) ? \(\text{No} \)

\[
\begin{align*}
q_1(x) & :- R(x,u), R(u,v), R(v,x) \\
q_2(x) & :- R(x,u), R(u,x)
\end{align*}
\]
Is \(q_1 \subseteq q_2 \) ? \textbf{Yes}

\[
q_1(x) :- R(x,u), R(u,y)
\]

\[
q_2(x) :- R(x,u), R(v,u), R(u,y)
\]
Examples

Is \(q_1 \subseteq q_2 \) ? \textbf{Yes}

\[
q_1(x) :\neg R(x,u), R(u,v) \\
q_2(x) :\neg R(x,u), R(x,y), R(u,v), R(u,w)
\]
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u,u)$
$q_2(x) :- R(x,u), R(u,v), R(v,w)$
Query containment

Theorem: The query containment and query equivalence problems for CQ are NP-complete.

Theorem: The query containment and query equivalence problems for Relational Calculus are undecidable.
Query containment for CQ

- Two ways to test
 - Check if q_2 holds on the canonical database of q_1
 - Check if there exists a homomorphism $q_2 \rightarrow q_1$
Canonical database

- Canonical database for q1 is $\mathbf{d} = (D, R_1^D, \ldots, R_k^D)$
 - D: all variables and constants in q1
 - R_1^D, \ldots, R_k^D: the body of q1

- Canonical tuple t_{q1} is the head of q1
Example

Canonical database $\mathbf{d} = (D, R^D)$

- $D = \{x, y, u, v\}$
- $R^D = \begin{array}{c|c}
 x & u \\
 v & u \\
 v & y \\
 \end{array}$

Canonical tuple $t_{q1} = (x, y)$
Example

Canonical database \(\mathcal{D} = (D, R) \)

\(D = \{x, u, 'Smith', 'Fred'\} \)

\(R = \)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>u</td>
</tr>
<tr>
<td>u</td>
<td>'Smith'</td>
</tr>
<tr>
<td>u</td>
<td>'Fred'</td>
</tr>
<tr>
<td>u</td>
<td>u</td>
</tr>
</tbody>
</table>

Canonical tuple \(t_{q1} = (x) \)
Checking containment using the canonical database

\[D = \{ x, y, u, v \} \]

\[R = \begin{array}{c|c}
 x & u \\
 v & u \\
 v & y \\
\end{array} \]

\[q_1(x,y) :- R(x,u), R(v,u), R(v,y) \]
\[q_2(x,y) :- R(x,u), R(v,u), R(v,w), R(t,w), R(t,y) \]

q1 is contained in q2
A homomorphism \(f : q_2 \rightarrow q_1 \) is a function \(f : \text{var}(q_2) \rightarrow \text{var}(q_1) \cup \text{const}(q_1) \), such that:

\[
\begin{align*}
&f(\text{body}(q_2)) \subseteq \text{body}(q_1) \\
&f(t_{q_1}) = t_{q_2}
\end{align*}
\]
Example

\[\text{var}(q1) = \{x,u,v,y\} \]
\[\text{var}(q2) = \{x,u,v,w,t,y\} \]

\[q1(x,y) : -\ R(x,u),\ R(v,u),\ R(v,y) \]
\[q2(x,y) : -\ R(x,u),\ R(v,u),\ R(v,w),\ R(t,w),\ R(t,y) \]

q1 is contained in q2
Example

\[\text{var}(q_1) \cup \text{const}(q_1) = \{x,u, 'Smith'\} \]

\[\text{var}(q_2) = \{x,u,v,w\} \]

\[q_1(x) : - R(x,u), R(u, 'Smith'), R(u,'Fred'), R(u,u) \]

\[q_2(x) : - R(x,u), R(u,v), R(u,'Smith'), R(w,u) \]

q1 is contained in q2
Theorem: Checking containment of two CQs is NP-complete.

\[\Phi = (\neg X_3 \lor \neg X_1 \lor X_4) \land (X_1 \lor X_2 \lor X_3) \land (\neg X_2 \lor \neg X_3 \lor X_1) \]

Proof: Reduction from 3-SAT

Given a 3CNF \(\Phi \)

Step 1:
- construct \(q_1 \) independently of \(\Phi \)

Step 2:
- construct \(q_2 \) from \(\Phi \)

Prove:
- there exists a homomorphism \(q_2 \rightarrow q_1 \) iff \(\Phi \) is satisfiable
Proof: Step 1

There are 4 types of clauses in every 3SAT:

Type 1: \(\neg X \lor \neg Y \lor \neg Z \)

Type 2: \(\neg X \lor \neg Y \lor Z \)

Type 3: \(\neg X \lor Y \lor Z \)

Type 4: \(X \lor Y \lor Z \)

For each type, \(q_1 \) contains one relation with all 7 satisfying assignments, where \(u=0, v=1 \)

Constructing \(q_1 \)

<table>
<thead>
<tr>
<th>R1 (misses v,v,v)</th>
<th>R2 (misses v,v,u)</th>
<th>R3 (misses v,u,u)</th>
<th>R4 (misses u,u,u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u u u</td>
<td>u u u</td>
<td>u u u</td>
<td>u u v</td>
</tr>
<tr>
<td>u u v</td>
<td>u u v</td>
<td>u u v</td>
<td>u v u</td>
</tr>
<tr>
<td>u v u</td>
<td>u v u</td>
<td>u v u</td>
<td>u v v</td>
</tr>
<tr>
<td>u v v</td>
<td>u v v</td>
<td>u v v</td>
<td>v u u</td>
</tr>
<tr>
<td>v u u</td>
<td>v u u</td>
<td>v u v</td>
<td>v u u</td>
</tr>
<tr>
<td>v u v</td>
<td>v u v</td>
<td>v v u</td>
<td>v v u</td>
</tr>
<tr>
<td>v v u</td>
<td>v v v</td>
<td>v v v</td>
<td>v v v</td>
</tr>
<tr>
<td>v v v</td>
<td>v v v</td>
<td>v v v</td>
<td>v v v</td>
</tr>
</tbody>
</table>
Proof: Step 2

q2 has one atom for each clause is Φ:
- Relation name is R1, or R2, or R3, or R4
- The variables are the same as those in the clause

Constructing q2

Example:
Φ = (¬X₃ ∨ ¬X₁ ∨ X₄) ∧ (X₁ ∨ X₂ ∨ X₃) ∧ (¬X₂ ∨ ¬X₃ ∨ X₁)

q2 = R2(x₃,x₁,x₄), R4(x₁,x₂,x₃), R2(x₂,x₃,x₁)
Proof

- Suppose there is a satisfying assignment for Φ: it maps each X_i to either 0 or 1.
 - Define function $f: \text{Vars}(q2) \rightarrow \text{Vars}(q1)$:
 - If $X_i = 0$ then $f(x_i) = u$
 - If $X_i = 1$ then $f(x_i) = v$
 - Then f is a homomorphism $f: q2 \rightarrow q1$

- Suppose there exists a homomorphism $f: q2 \rightarrow q1$
 - Define the assignment:
 - If $f(x_i) = u$ then $X_i = 0$
 - If $f(x_i) = v$ then $X_i = 1$
 - This is a satisfying assignment for Φ
Beyond CQ

- Containment for arbitrary relational queries is undecidable
- Any static analysis on relational queries is undecidable
- All these results follow from Trakhtenbrot’s theorem
Trakhtenbrot’s theorem

Definition: A sentence φ is called **finitely satisfiable** if there exists a finite database instance D s.t. $D \models \varphi$

Theorem: The following problem is undecidable: Given FO sentence φ, check if φ is finitely satisfiable.
Query containment for UCQ

\[q_1 \cup q_2 \cup q_3 \ldots \subseteq q'_1 \cup q'_2 \cup q'_3 \ldots \]

Note:

\[q_1 \cup q_2 \cup q_3 \ldots \subseteq q \quad \text{iff} \quad q_1 \subseteq q \quad \text{and} \quad q_2 \subseteq q \quad \text{and} \quad \ldots \]

Theorem: \(q \subseteq q'_1 \cup q'_2 \cup q'_3 \ldots \) iff there exists some \(k \) such that \(q \subseteq q'_k \)
Query minimization

Definition: A conjunctive query \(q \) is minimal, if for every other query \(q' \) such that \(q \equiv q' \), \(q' \) has at least as many predicates (subgoals) as \(q \).

Are these queries minimal?

\[
q(x) :\ - \ R(x,y), \ R(y,z), \ R(x,x)
\]

\[
q(x) :\ - \ R(x,y), \ R(y,z), \ R(x,'Alice')
\]
Query minimization

Algorithm:
- Choose a subgoal g of q
- Remove g: let q' be the new query
- $q \subseteq q'$ \(\rightarrow\) Why?
- If $q' \subseteq q$, then permanently remove g

The order in which we inspect subgoals doesn’t matter
In practice

- No database system performs minimization
 - It’s hard
 - Users usually write minimal queries

- Non-minimal queries arise when using views intensely
Remember Semijoins?

\[R \bowtie S = \Pi_{A_1, \ldots, A_n} (R \bowtie S) \]

\[R \bowtie S = (R \bowtie S) \bowtie S \]

Prove that the following two datalog queries are equivalent:

q1(x,y,z)

- **q1(x,y,z)** :- **R(x,y)**, **S(x,z)**

q2(x,y,z)

- **q2(x,y,z)** :- **R(x,y)**, **S(x,u)**, **S(x,z)**

R1(x,y)

- **R1(x,y)** :- **R(x,y)**, **S(x,z)**
- **q2(x,y,z)** :- **R1(x,y)**, **S(x,z)**

q1(x,y,z) :- **R(x,y)**, **S(x,z)**
- **q1(x,y,z)** :- **R(x,y)**, **S(x,z)**
- **q2(x,y,z)** :- **R(x,y)**, **S(x,u)**, **S(x,z)**
Semijoins

- Important in distributed databases
- Often combined with Bloom filters
- See 22.10.2 in the textbook
Semijoin Reducer

Given a query: \(Q = R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n \)

A semijoin reducer for \(q \) is:

\(R_{i1} = R_{i1} \bowtie R_{j1} \)
\(R_{i2} = R_{i2} \bowtie R_{j2} \)
\(\ldots \)
\(R_{ip} = R_{ip} \bowtie R_{jp} \)

Such that the query is equivalent to

\(Q = R_{k1} \bowtie R_{k2} \bowtie \cdots \bowtie R_{kn} \)

In a full reducer, no dangling tuples remain
Example

\[Q = R(A,B) \bowtie S(B,C) \]

Semijoin reducer:

\[R_1(A,B) = R(A,B) \bowtie S(B,C) \]

Re-written query: \[Q = R_1(A,B) \bowtie S(B,C) \]

Are there any dangling tuples?
Example

\[Q = R(A,B) \bowtie S(B,C) \]

\[\text{Full semijoin reducer:} \]
\[R_1(A,B) = R(A,B) \bowtie S(B,C) \]
\[S_1(B,C) = S(B,C) \bowtie R_1(A,B) \]

\[\text{Re-written query: } Q = R_1(A,B) \bowtie S_1(B,C) \]

No more dangling tuples
More complex: \(Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D,E) \)

Full reducer:
\[
S'(B,C) = S(B,C) \bowtie R(A,B) \\
T'(C,D,E) = T(C,D,E) \bowtie S'(B,C) \\
S''(B,C) = S'(B,C) \bowtie T'(C,D,E) \\
R'(A,B) = R(A,B) \bowtie S''(B,C)
\]

\(Q = R'(A,B) \bowtie S''(B,C) \bowtie T'(C,D,E) \)
Semijoin Reducer

Example: $Q = R(A,B) \bowtie S(B,C) \bowtie T(C,A)$

No full reducer

Theorem: A query has a full reducer iff it is “acyclic”.
Expressive power of FO

Let $R(x,y)$ represent a graph

Query $\text{path}(x,y) =$

All x,y such that there is a path from x to y

Theorem: $\text{path}(x,y)$ cannot be expressed in FO
Non-recursive rules

Graph $R(x,y)$

- $P(x,y) :- R(x,u), R(u,v), R(v,y)$
- $A(x,y) :- P(x,u), P(u,y)$

Can unfold into:

- $A(x,y) :- R(x,u), R(u,v), R(v,w), R(w,m), R(m,n), R(n,y)$
Non-recursive datalog with negation

Expresses FO queries
- Negated subgoals
- Implicit union

Can evaluate in an order such that all body predicates have been evaluated.
Recursion

Two forms of transitive closure

\[\text{Path}(x,y) \ :- \ R(x,y)\]
\[\text{Path}(x,y) \ :- \ \text{Path}(x,u), \ R(u,y)\]

\[\text{Path}(x,y) \ :- \ R(x,y)\]
\[\text{Path}(x,y) \ :- \ \text{Path}(x,u), \ \text{Path}(u,y)\]
Recursion example

- EDB Par(c,p) = p is parent of c

- Generalized cousins: people with common ancestors one or more generations back

\[
\begin{align*}
\text{Sib}(x,y) & : \text{Par}(x,p), \text{Par}(y,p), x \neq y \\
\text{Cousin}(x,y) & : \text{Sib}(x,y) \\
\text{Cousin}(x,y) & : \text{Par}(x,xp), \text{Par}(y,yp), \text{Cousin}(xp,yp)
\end{align*}
\]
Definition of recursion

Form a dependency graph whose nodes are IDB predicates

Connect $X \rightarrow Y$ iff there is a rule with X in the head and Y in the body

Cycle = recursion; no cycle = no recursion
Meaning of datalog rules

- **Model-theoretic**
 - Rules define a set of satisfying relations
 - Whenever body is true, head is true

- **Proof-theoretic**
 - Set of facts derivable from EDB relations by applying the rules.
Evaluating recursive rules

- This works if there is no negation
- Start with all IDB relations empty
- Repeatedly evaluate the rules using the EDB and the previous IDB to get the new IDB
- End when there is no change in the IDB relations
“Naïve” evaluation algorithm

Start: IDB = ∅

Apply rules to IDB, EDB

Change to IDB?

Yes

No

Done
Semi-naïve evaluation

Since the EDB never changes, on each round we only get new IDB tuples if we use at least one IDB tuple obtained in the previous round

Saves work; lets us avoid re-discovering most known facts

Though a fact can still be derived in more than one way
Par data: parent above child

Round 1
Round 2
Round 3
Recursion + negation

- Naïve evaluation doesn’t work when there are negated subgoals

- Negation wrapped in recursion makes no sense in general

- Even when they are separate, we can have ambiguity about the correct IDB relations
Stratified negation

- Stratification is a constraint usually placed on datalog with recursion and negation.
- It rules out negation wrapped inside recursion.
Example

P(x) :- R(x) & \neg Q(x)
Q(x) :- R(x) & \neg P(x)

{(1)}

Two models satisfy the rules:

P = \{\}, Q={1}
P={1}, Q=\{\}
Intuitively, the stratum of an IDB predicate P is the maximum number of negations that can be applied to an IDB predicate used in evaluating P

Stratified negation = finite strata
Stratum graph

- Nodes = IDB predicates
- Connect A → B if predicate A depends on B
- Label the edge “-” if the B subgoal is negated

- The stratum is the maximum number of “-” edges on a path leading from that node
- A datalog program is stratified if all its IDB predicates have finite strata
Example

\[
P(x) \leftarrow R(x) \land \neg Q(x)
\]
\[
Q(x) \leftarrow R(x) \land \neg P(x)
\]
The stratified model

- When a datalog program is stratified, we can evaluate IDB predicates lowest-stratum-first.

- Once evaluated, treat it as EDB for higher strata.
Summary

- Query complexity
- Conjunctive queries
- Containment, equivalence, minimality
- Semijoin reductions
- Recursive datalog