Database Design and Implementation

CS 645

Schema Refinement
First Normal Form (1NF)
A schema is in 1NF if all tables are flat

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>3.8</td>
</tr>
<tr>
<td>Bob</td>
<td>3.7</td>
</tr>
<tr>
<td>Carol</td>
<td>3.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Takes</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Math</td>
</tr>
<tr>
<td>Carol</td>
<td>Math</td>
</tr>
<tr>
<td>Alice</td>
<td>DB</td>
</tr>
<tr>
<td>Bob</td>
<td>DB</td>
</tr>
<tr>
<td>Alice</td>
<td>OS</td>
</tr>
<tr>
<td>Carol</td>
<td>OS</td>
</tr>
</tbody>
</table>

May need to add keys
Schema design

Conceptual Model:

<table>
<thead>
<tr>
<th>Patient</th>
<th>patient_of</th>
<th>Doctor</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>zip</td>
<td>name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dno</td>
</tr>
</tbody>
</table>

Relational Model: plus FDs

(FD = Functional Dependency)

Normalization: Eliminates anomalies
Data anomalies

When a database is poorly designed we get anomalies:

- **Redundancy**: data is repeated
- **Update anomalies**: need to change in several places
- **Delete anomalies**: may lose data when we don’t want
Recall set attributes (persons with several phones):

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>413-555-1234</td>
<td>Amherst</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>413-555-6543</td>
<td>Amherst</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

One person may have multiple phones, but lives in only one city.

Primary key is thus (SSN, PhoneNumber)

The above is in 1NF, but what is the problem with this schema?
Relational schema design

Recall set attributes (persons with several phones):

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>413-555-1234</td>
<td>Amherst</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>413-555-6543</td>
<td>Amherst</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies:
- Redundancy = repeat data
- Update anomalies = what if Fred moves to “Boston”?
- Deletion anomalies = what if Joe deletes his phone number? (what if Joe had only one phone #)
Relation decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>413-555-1234</td>
<td>Amherst</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>413-555-6543</td>
<td>Amherst</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Boston” (how ?)
- Easy to delete all Joe’s phone numbers (how ?)
Relational schema design
(logical design)

Main idea:
- Start with some relational schema
- Find out its functional dependencies (discussed next!)
- Use them to design a better relational schema
Functional Dependencies

- A form of constraint
 - Hence, part of the schema

- Finding them is part of the database design

- Use them to normalize the relations
Functional Dependencies (FDs)

Definition:
If two tuples agree on the attributes $A_1, A_2, ..., A_n$, then they must also agree on the attributes $B_1, B_2, ..., B_m$.

Formally:

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Example:

streetName \rightarrow zipcode
Example

A FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>
Example

A FD **holds**, or **does not hold** on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Position → Phone
Example

A FD holds, or **does not hold** on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

But not: Phone → Position
Example

FD’s are constraints:
• On some instances they hold
• On others they don’t

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>

name \(\rightarrow\) color
category \(\rightarrow\) department
color, category \(\rightarrow\) price

Does this instance satisfy all the FDs?
Example

FD’s are constraints:
• On some instances they hold
• On others they don’t

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Stationary</td>
<td>Blue</td>
<td>Supplies</td>
<td>59</td>
</tr>
</tbody>
</table>

What about this one?
FDs and anomalies

- Anomalies occur when certain “bad” FDs hold

- How do we know if a “bad” FD holds?
An interesting observation

If all these FDs are true:

- name \(\rightarrow \) color
- category \(\rightarrow \) department
- color, category \(\rightarrow \) price

Then this FD also holds:

- name, category \(\rightarrow \) price

Why ??
Deriving all FDs: Armstrong’s Rules

Splitting and combining
\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]
\[\leftrightarrow \]
\[A_1, A_2, \ldots, A_n \rightarrow B_1 \]
\[A_1, A_2, \ldots, A_n \rightarrow B_2 \]
[\ldots]
\[A_1, A_2, \ldots, A_n \rightarrow B_m \]

Trivial
\[A_1, A_2, \ldots, A_n \rightarrow A_i \]

Transitive
\[A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m \]
\[B_1, \ldots, B_m \rightarrow C_1, \ldots, C_p \]
\[\rightarrow \]
\[A_1, \ldots, A_n \rightarrow C_1, \ldots, C_p \]
Example (continued)

Start from the following FDs:

Infer the following FDs:

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Which Rule did we apply?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. name, category \rightarrow name</td>
<td></td>
</tr>
<tr>
<td>5. name, category \rightarrow color</td>
<td></td>
</tr>
<tr>
<td>6. name, category \rightarrow category</td>
<td></td>
</tr>
<tr>
<td>7. name, category \rightarrow color, category</td>
<td></td>
</tr>
<tr>
<td>8. name, category \rightarrow price</td>
<td></td>
</tr>
</tbody>
</table>

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price
Example (continued)

Answers:

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Which Rule did we apply?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. name → color</td>
<td></td>
</tr>
<tr>
<td>2. category → department</td>
<td></td>
</tr>
<tr>
<td>3. color, category → price</td>
<td></td>
</tr>
<tr>
<td>4. name, category → name</td>
<td>Trivial</td>
</tr>
<tr>
<td>5. name, category → color</td>
<td>Transitivity on 4, 1</td>
</tr>
<tr>
<td>6. name, category → category</td>
<td>Trivial</td>
</tr>
<tr>
<td>7. name, category → color, category</td>
<td>Split/combine on 5, 6</td>
</tr>
<tr>
<td>8. name, category → price</td>
<td>Transitivity on 3, 7</td>
</tr>
</tbody>
</table>

THIS IS TOO HARD! Let’s see an easier way.
Deriving all FDs: Closure

Given a set of attributes $A_1, ..., A_n$

The closure, $\{A_1, ..., A_n\}^+ = \text{the set of attributes } B$ s.t. $A_1, ..., A_n \rightarrow B$

Example:

Closures:

- name \rightarrow color
- category \rightarrow department
- color, category \rightarrow price

- $\text{name}^+ = \{\text{name, color}\}$
- $\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$
- $\text{color}^+ = \{\text{color}\}$
Closure algorithm

\[X = \{ A_1, \ldots, A_n \} \].

Repeat until \(X \) doesn’t change do:

if \(B_1, \ldots, B_n \rightarrow C \) is a FD and \(B_1, \ldots, B_n \) are all in \(X \)

then add \(C \) to \(X \).

\{name, category\}^+ =

\{ name, category, color, department, price \}

Hence: \(name \rightarrow color \rightarrow department \rightarrow price \)
Example

In class:

\(R(A,B,C,D,E,F) \)

<table>
<thead>
<tr>
<th>Relation</th>
<th>(A, B)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation</td>
<td>(A, D)</td>
<td>(E)</td>
</tr>
<tr>
<td>Relation</td>
<td>(B)</td>
<td>(D)</td>
</tr>
<tr>
<td>Relation</td>
<td>(A, F)</td>
<td>(B)</td>
</tr>
</tbody>
</table>

Compute \(\{A,B\}^+ \) \hspace{2cm} X = \{A, B\}
Example

In class:

\[R(A, B, C, D, E, F) \]

\[
\begin{array}{ccc}
A, B & \rightarrow & C \\
A, D & \rightarrow & E \\
B & \rightarrow & D \\
A, F & \rightarrow & B \\
\end{array}
\]

Compute \(\{A, B\}^+ \) \hspace{1cm} X = \{A, B\}
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{array}{c}
A, B
ightarrow C \\
A, D
ightarrow E \\
B
ightarrow D \\
A, F
ightarrow B \\
\end{array}
\]

Compute \(\{A,B\}^+ \)

\[X = \{A, B, C\} \]
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}
\]

Compute \(\{A, B\}^+ \) \hspace{1cm} X = \{A, B, C\}
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{array}{c|c}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B \\
\end{array}
\]

Compute \(\{A, B\}^+ \) \hspace{1cm} X = \{A, B, C, D\}
Example

In class:

\[R(A, B, C, D, E, F) \]

| \(A, B \rightarrow C \) |
| \(A, D \rightarrow E \) |
| \(B \rightarrow D \) |
| \(A, F \rightarrow B \) |

Compute \(\{A, B\}^+ \) \quad \(X = \{A, B, C, D\} \)
Example

In class:

\[R(A, B, C, D, E, F) \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>→</td>
<td>C</td>
</tr>
<tr>
<td>A, D</td>
<td>→</td>
<td>E</td>
</tr>
<tr>
<td>B</td>
<td>→</td>
<td>D</td>
</tr>
<tr>
<td>A, F</td>
<td>→</td>
<td>B</td>
</tr>
</tbody>
</table>

Compute \(\{A, B\}^+ \)
\[X = \{A, B, C, D, E\} \]
Example

In class:

\(\mathcal{R}(A,B,C,D,E,F) \)

- \(A, B \rightarrow C \)
- \(A, D \rightarrow E \)
- \(B \rightarrow D \)
- \(A, F \rightarrow B \)

Compute \(\{A,B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F\} \)
Example

In class:

\[R(\{A,B,C,D,E,F\}) \]

\[\begin{align*}
A, B & \to C \\
A, D & \to E \\
B & \to D \\
A, F & \to B
\end{align*} \]

Compute \(\{A,B\}^+ \) \hspace{1cm} X = \{A, B, C, D, E\}

Compute \(\{A, F\}^+ \) \hspace{1cm} X = \{A, F, B\}
Example

In class:

\[R(A, B, C, D, E, F) \]

\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B \\
\end{align*}

Compute \(\{A, B\}^+ \) \hspace{1cm} X = \{A, B, C, D, E\}

Compute \(\{A, F\}^+ \) \hspace{1cm} X = \{A, F, B, C, D, E\}
Why do we need closure?

- With closure we can find all FDs easily

- To check if $X \rightarrow A$
 - Compute X^+
 - Check if $A \in X^+$
Keys

- A superkey is a set of attributes A_1, \ldots, A_n s.t. for any other attribute B, we have $A_1, \ldots, A_n \rightarrow B$

- A key is a minimal superkey
 - i.e., set of attributes which is a superkey and for which no subset is a superkey
Computing (super)keys

- Compute X^+ for all sets X
- If $X^+ = \text{all attributes}$, then X is a superkey
- List only the minimal X’s to get the keys
Example

Product(name, price, category, color)

name, category → price
category → color

What is the key?
Example

Product(name, price, category, color)

(name, category) \rightarrow \text{price}

category \rightarrow \text{color}

What is the key?

\((name, \text{category})^+ = \{name, \text{category, price, color}\}\)

Hence \((name, \text{category})\) is a key
Eliminating anomalies

Main idea:

웃 $X \rightarrow A$ is OK if X is a (super)key

웃 $X \rightarrow A$ is not OK otherwise
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>413-555-1234</td>
<td>Amherst</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>413-555-6543</td>
<td>Amherst</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

What is the key? \{SSN, PhoneNumber\}

Hence \(SSN \rightarrow Name, City \) is a “bad” dependency
A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_1, ..., A_n \rightarrow B$ is a non-trivial dependency in R,
then $\{A_1, ..., A_n\}$ is a superkey for R

In other words: there are no “bad” FDs

Equivalently:
for all X, either $(X^+ = X)$ or $(X^+ = \text{all attributes})$
Example (revisited)

Let’s check anomalies:
- Redundancy?
- Update?
- Delete?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Amherst</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>PhoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-45-6789</td>
<td>413-555-1234</td>
</tr>
<tr>
<td>123-45-6789</td>
<td>413-555-6543</td>
</tr>
<tr>
<td>987-65-4321</td>
<td>908-555-2121</td>
</tr>
<tr>
<td>987-65-4321</td>
<td>908-555-1234</td>
</tr>
</tbody>
</table>
Example decomposition

Person(name, SSN, age, hairColor, phoneNumber)

FD1: SSN → name, age
FD2: age → hairColor

Decompose into BCNF:
Example decomposition

Person(name, SSN, age, hairColor, phoneNumber)

FD1: SSN \rightarrow name, age
FD2: age \rightarrow hairColor

Decompose into BCNF:

What is the key? \{SSN, phoneNumber\}

But how to decompose?

Person(SSN, name, age)
Phone(SSN, hairColor, phoneNumber)

or

Person(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

SSN \rightarrow name, age, hairColor

or
BCNF decomposition algorithm

BCNF_Decompose(R)

find X s.t.: X ≠ X⁺ ≠ [all attributes]

if (not found) then “R is in BCNF”

let Y = X⁺ - X
let Z = [all attributes] - X⁺
decompose R into R₁(X ∪ Y) and R₂(X ∪ Z)
continue to decompose recursively R₁ and R₂
Example

What are the keys?

R(A,B,C,D)

A → B
B → C

R(A,B,C,D)

A⁺ = ABC ≠ ABCD

R₁₁(B,C)

B⁺ = BC ≠ ABC

R₁₂(A,B)

R₂(A,D)

What are the keys?

What happens if in R we first pick B⁺? Or AB⁺?
Decompositions in general

\[R(A_1, \ldots, A_n, B_1, \ldots, B_m, C_1, \ldots, C_p) \]

- \(R_1(A_1, \ldots, A_n, B_1, \ldots, B_m) \)
- \(R_2(A_1, \ldots, A_n, C_1, \ldots, C_p) \)

\(R_1 \) = projection of \(R \) on \(A_1, \ldots, A_n, B_1, \ldots, B_m \)
\(R_2 \) = projection of \(R \) on \(A_1, \ldots, A_n, C_1, \ldots, C_p \)
Theory of decomposition

Sometimes it is correct:

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

Lossless decomposition
Incorrect decomposition

Sometimes it is not:

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

What's incorrect??

Lossy decomposition
Decompositions in general

\[R(A_1, \ldots, A_n, B_1, \ldots, B_m, C_1, \ldots, C_p) \]

If \(A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m \)

Then the decomposition is lossless

Note: don’t need \(A_1, \ldots, A_n \rightarrow C_1, \ldots, C_p \)

BCNF decomposition is always lossless. WHY?
Decompositions in general

If \(A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m \)

Then the decomposition is lossless

Note: don’t need \(A_1, \ldots, A_n \rightarrow C_1, \ldots, C_p \)

BCNF decomposition is always lossless. WHY?
1. Elimination of anomalies
2. Recoverability of information
 ✤ Can we get the original relation back?
3. Preservation of dependencies
 ✤ Want to enforce FDs without performing joins

Sometimes cannot decompose into BCNF without losing ability to check some FDs in single relation
BCNF and dependencies

So, there is a BCNF violation, and we decompose.

In BCNF we lose the FD

Company, Product → Unit
A relation R is in 3rd normal form if:
Whenever there is a nontrivial dep. $A_1, A_2, ..., A_n \rightarrow B$ for R, then \{$A_1, A_2, ..., A_n$\} is a super-key for R, or B is part of a key.

Tradeoffs:
- **BCNF**: no anomalies, but may lose some FDs
- **3NF**: keeps all FDs, but may have some anomalies