Database design and implementation

Lectures 11-12: Database Theory
Theory problems in databases

- Expressiveness of languages
 - Any query in L1 can be expressed in L2

- Complexity of languages
 - Bounds on resources required to evaluate any query in language L

- Static analysis of queries (for optimization)
 - Given q in L: is it minimal?
 - Given q1 and q2 in L: are they equivalent?

- Views
Crash review of complexity classes

- **AC^0**
 - Circuits of $O(1)$ depth and polynomial size

- **L (LOGSPACE)**
 - Solvable in logarithmic (small) space

- **NL (NLOGSPACE)**
 - "YES" answers checkable in logarithmic space

- **NC**
 - Solvable efficiently (in polylogarithmic time) on parallel computers

- **P (PTIME)**
 - Solvable in polynomial time

- **NP**
 - "YES" answers checkable in polynomial time

- **PSPACE**
 - Solvable with polynomial memory
Rules of thumb

- Step 1: check if you can solve the problem “in that class”
- Step 2: if not, check if your problem “looks like” (is reducible from) the complete problem from the next class.

- Of interest: PTIME-complete are not efficiently parallelizable.
Query complexity

Given a query Q and a database D, what is the complexity of computing Q(D)?

- The answer depends on the query language
 - Relational algebra, calculus, datalog

- Design tradeoff:
 - High complexity \rightarrow rich queries
 - Low complexity \rightarrow implemented efficiently
Complexity of query languages

Query Q, database D

- Data complexity
 - Fix Q, complexity f(D)

- Query complexity
 - Fix D, complexity f(Q)

- Combined complexity
 - Complexity f(D,Q)
Conventions

- Complexity is usually defined for a decision problem
 - We study the complexity of Boolean queries

- Complexity usually assumes some encoding of the input
 - We encode instances using binary representation
Definition: A Boolean query is a query that returns either true or false.

Non-Boolean

```
SELECT DISTINCT R.x, S.y
FROM   R, S
WHERE R.z = S.z
```

```
Q(x,y) :- R(x,z), S(z,y)
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
```

Boolean

```
SELECT DISTINCT 'yes'
FROM   R, S
WHERE R.x = 'a' and R.z = S.z and S.y = 'b'
```

```
Q :- R(x,z), S(z,y)
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
Answer() :- T('a','b')
```
Database encoding

- Encode $D = (D, R_1^D, ..., R_k^D)$ as follows:
 - Let $n = |\text{ADom}(D)|$
 - If R_i has arity k, encode it as a string of n^k bits:
 - 0 means element $(a_1, ...a_k) \not\in R_i^D$
 - 1 means element $(a_1, ...a_k) \in R_i^D$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Data complexity

- Fix a Boolean query Q in the query language. Determine the complexity of the following problem:
 - Given an input database instance $D = (D, R_1^D, \ldots, R_k^D)$ check if $Q(D) = \text{true}$
 - This is also known as model checking problem: check if D is a model for Q.
What is the complexity of relational queries?
Example

\[Q = \exists z. \; R('a',z) \land S(z,'b') \]

Prove that \(Q \) is in \(AC^0 \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

Q = ∃z. R('a', z) ∧ S(z, 'b')

Prove that Q is in AC⁰

Circuit of depth 2

R:
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

S:
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

OR has n inputs
Each AND has 2 inputs
What is the complexity of relational queries?

All relational queries (expressible in RC) are in AC^0
What is the complexity of datalog queries?

\[T(x,y) \leftarrow R(x,y) \]
\[T(x,y) \leftarrow T(x,z), R(z,y) \]
Answer() :- T(‘a’,’b’)
Datalog is not in AC^0

- Parity is not in AC^0
- We will reduce parity to the reachability problem
 - Given input $(x_1, x_2, x_3, x_4, x_5) = (0,1,1,0,1)$ construct the graph:

```
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
Answer() :- T('a_1', 'b_6')
```

The # of 1s is odd iff Answer is true
Datalog is in PTIME

- Fix any Boolean datalog program P.
- Given D, check if $P(D) = \text{true}$ is in PTIME

Proof argument:

- If an IDB has arity k, then it will reach its fixpoint in at most n^k iterations.
Conjunctive Queries (CQ)

- A subset of FO (first order)
 - Less expressive
- Many queries in practice are conjunctive
- Some optimizers only handle CQs
 - Break larger queries into many CQs
- CQs have “better” theoretical properties than arbitrary queries
Conjunctive Queries

- R: Extentional database (EDB) – stored
- P: Intentional database (IDB) – computed

Example query:

\[P(x,z) :- R(x,y) \land R(y,z) \]
Conjunctive Queries

When facts in the body are true, we infer the head.
Consider all possible assignments of variables in the body.
Conjunctive queries

- A single datalog rule
- Equivalent to SELECT-DISTINCT-FROM-WHERE
- Select/project/join in RA
- Existential/conjunctive fraction of RC

Strictly speaking, we are not allowed to have non-equality selection predicates
Example

- Find all employees having the same manager as ‘Smith’

\[
A(x) \text{ :- ManagedBy(‘Smith’,y) & ManagedBy(x,y)}
\]

\[
\text{SELECT DISTINCT m2.name}
\text{ FROM ManagedBy m1, ManagedBy m2}
\text{ WHERE m1.name = ‘Smith’ AND m1.manager = m2.manager}
\]
Properties of CQ

- **Satisfiability**
 - A query is satisfiable if there exists some input relation R such that q(R) is non-empty
 - **Every CQ is satisfiable**

- **Monotonicity**
 - A query is monotonic if for each instance I, J over the schema, I \(\subseteq J \) implies \(q(I) \subseteq q(J) \)
 - **Every CQ is monotonic**
Satisfiability

We can always generate satisfying EDB relations from the body of the rule

\[
S(x,y,z) :- P(x,w) \& R(w,y,v) \& P(v,z)
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a</td>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monotonicity

\[\text{ans}(u):- R_1(u_1) \land \ldots \land R_n(u_n) \]

- Consider 2 databases \(I, J \), s.t. \(I \subseteq J \)
- Let \(t \in q(I) \)
 - For some substitution \(v \):
 - \(v(u_i) \in I(R_i) \) for each \(i \).
 - \(t = v(u) \)
 - Since \(I \subseteq J \), \(v(u_i) \in J(R_i) \) for each \(i \).
 - So \(t \in q(J) \)
Consequence of monotonicity

This query is not monotone
Therefore, not CQ
It cannot be expressed as a simple SFW query

SELECT DISTINCT C.cname
FROM Company C
WHERE 100 > ALL (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)
Equivalence and containment

- Needed for a variety of static analysis tasks
 - Query optimization
 - Query rewriting using views
 - Testing for semijoin reductions
Query equivalence

Definition: Queries q1 and q2 are equivalent if for every database D, q1(D) = q2(D)

Notation: q1 ≡ q2
Query containment

Definition: Query q_1 is contained in q_2 if for every database D, $q_1(D) \subseteq q_2(D)$

Notation: $q_1 \subseteq q_2$

Fact: $q_1 \subseteq q_2$ and $q_2 \subseteq q_1$ iff $q_1 \equiv q_2$

For the case of Boolean queries, containment is logical implication
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u, 'Smith')$
$q_2(x) :- R(x,u), R(u,v)$
Examples

Is \(q_1 \subseteq q_2 \)? \(\text{Yes}\)

\[
q_1(x) :- R(x,u), R(u,v), R(v,w)
\]

\[
q_2(x) :- R(x,u), R(u,v)
\]
Examples

Is $q_1 \subseteq q_2$? **No**

$q_1(x) :- R(x,u), R(u,v), R(v,x)$
$q_2(x) :- R(x,u), R(u,x)$
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u,y)
q_2(x) :- R(x,u), R(v,u), R(u,y)$
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u,v)$
$q_2(x) :- R(x,u), R(x,y), R(u,v), R(u,w)$
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u,u)$
$q_2(x) :- R(x,u), R(u,v), R(v,w)$
Query containment

Theorem: The query containment and query equivalence problems for CQ are NP-complete.

Theorem: The query containment and query equivalence problems for Relational Calculus are undecidable.
Query containment for CQ

- Two ways to test
 - Check if q2 holds on the canonical database of q1
 - Check if there exists a homomorphism $q2 \rightarrow q1$
Canonical database

- Canonical database for q1 is $D = (D, R_1^D, ..., R_k^D)$
 - D: all variables and constants in q1
 - $R_1^D, ..., R_k^D$: the body of q1

- Canonical tuple t_{q1} is the head of q1
Example

q1(x,y) :- R(x,u), R(v,u), R(v,y)

- Canonical database $D = (D, R^D)$
 - $D = \{x,y,u,v\}$
 - $R^D =
 \begin{array}{cc}
 x & u \\
 v & u \\
 v & y \\
 \end{array}$
 - Canonical tuple $t_{q1} = (x,y)$
Example

q₁(x) :- R(x,u), R(u, ‘Smith’), R(u,’Fred’), R(u,u)

- Canonical database \(D = (D, R) \)
 - \(D = \{x,u,’Smith’,’Fred’\} \)
 - \(R = \)
 \[
 \begin{array}{|c|c|}
 \hline
 x & u \\
 \hline
 u & ‘Smith’ \\
 \hline
 u & ‘Fred’ \\
 \hline
 u & u \\
 \hline
 \end{array}
 \]
 - Canonical tuple \(t_{q₁} = (x) \)
Checking containment using the canonical database

\[D = \{ x, y, u, v \} \]
\[R = \]
\[
\begin{array}{c|c}
\hline
x & u \\
\hline
v & u \\
\hline
v & y \\
\hline
\end{array}
\]

\[q_1(x,y) : - R(x,u), R(v,u), R(v,y) \]
\[q_2(x,y) : - R(x,u), R(v,u), R(v,w), R(t,w), R(t,y) \]

q1 is contained in q2
Query homomorphisms

- A homomorphism \(f: q_2 \rightarrow q_1 \) is a function \(f: \text{var}(q_2) \rightarrow \text{var}(q_1) \cup \text{const}(q_1) \), such that:
 - \(f(\text{body}(q_2)) \subseteq \text{body}(q_1) \)
 - \(f(t_{q_1}) = t_{q_2} \)
Example

\[\text{var}(q1) = \{x, u, v, y\} \]
\[\text{var}(q2) = \{x, u, v, w, t, y\} \]

\[q1(x, y) : \neg R(x, u), R(v, u), R(v, y) \]
\[q2(x, y) : \neg R(x, u), R(v, u), R(v, w), R(t, w), R(t, y) \]

q1 is contained in q2
Example

\[\text{var}(q1) \cup \text{const}(q1) = \{x,u,’Smith’\} \]
\[\text{var}(q2) = \{x,u,v,w\} \]

\[q1(x) :- \ R(x,u), R(u,’Smith’), R(u,’Fred’), R(u,u) \]
\[q2(x) :- \ R(x,u), R(u,v), R(u,’Smith’), R(w,u) \]

q1 is contained in q2
Theorem: Checking containment of two CQs is NP-complete.

\[\Phi = (\neg X_3 \lor \neg X_1 \lor X_4) \land (X_1 \lor X_2 \lor X_3) \land (\neg X_2 \lor \neg X_3 \lor X_1) \]

Proof: Reduction from 3-SAT

Given a 3CNF \(\Phi \)

Step 1:
- construct \(q_1 \) independently of \(\Phi \)

Step 2:
- construct \(q_2 \) from \(\Phi \)

Prove:
- there exists a homomorphism \(q_2 \rightarrow q_1 \) iff \(\Phi \) is satisfiable
Proof: Step 1

There are 4 types of clauses in every 3SAT:

- **Type 1:** \(\neg X \lor \neg Y \lor \neg Z\)
- **Type 2:** \(\neg X \lor \neg Y \lor Z\)
- **Type 3:** \(\neg X \lor Y \lor Z\)
- **Type 4:** \(X \lor Y \lor Z\)

For each type, q1 contains one relation with all 7 satisfying assignments, where \(u=0, \ v=1\)

<table>
<thead>
<tr>
<th>Relation</th>
<th>R1 (misses v,v,v)</th>
<th>R2 (misses v,v,u)</th>
<th>R3 (misses v,u,u)</th>
<th>R4 (misses u,u,u)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u u u</td>
<td>u u u</td>
<td>u u u</td>
<td>u u u</td>
</tr>
<tr>
<td></td>
<td>u u v</td>
<td>u u v</td>
<td>u u v</td>
<td>u v u</td>
</tr>
<tr>
<td></td>
<td>u v u</td>
<td>u v u</td>
<td>u v u</td>
<td>u v u</td>
</tr>
<tr>
<td></td>
<td>u v v</td>
<td>u v v</td>
<td>u v v</td>
<td>v u v</td>
</tr>
<tr>
<td></td>
<td>v u u</td>
<td>v u u</td>
<td>v u u</td>
<td>v u u</td>
</tr>
<tr>
<td></td>
<td>v u v</td>
<td>v u v</td>
<td>v v u</td>
<td>v u v</td>
</tr>
<tr>
<td></td>
<td>v v u</td>
<td>v v v</td>
<td>v v v</td>
<td>v v v</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proof: Step 2

Constructing q2

q2 has one atom for each clause is Φ:
• Relation name is R1, or R2, or R3, or R4
• The variables are the same as those in the clause

Example:
Φ = (¬X₃ ∨ ¬X₁ ∨ X₄) ∧ (X₁ ∨ X₂ ∨ X₃) ∧ (¬X₂ ∨ ¬X₃ ∨ X₁)

q2 = R2(x₃,x₁,x₄), R4(x₁,x₂,x₃), R2(x₂,x₃,x₁)
Proof

- Suppose there is a satisfying assignment for \(\Phi \): it maps each \(X_i \) to either 0 or 1
 - Define function \(f: Vars(q2) \to Vars(q1) \):
 - If \(X_i = 0 \) then \(f(x_i) = u \)
 - If \(X_i = 1 \) then \(f(x_i) = v \)
 - Then \(f \) is a homomorphism \(f: q2 \to q1 \)

- Suppose there exists a homomorphism \(f: q2 \to q1 \)
 - Define the assignment:
 - If \(f(x_i) = u \) then \(X_i = 0 \)
 - If \(f(xi) = v \) then \(X_i = 1 \)
 - This is a satisfying assignment for \(\Phi \)
Beyond CQ

- Containment for arbitrary relational queries is undecidable
- Any static analysis on relational queries is undecidable
- All these results follow from Trakhtenbrot’s theorem
Trakhtenbrot’s theorem

Definition: A sentence φ is called **finitely satisfiable** if there exists a finite database instance D s.t. $D \models \varphi$

Theorem: The following problem is undecidable: Given FO sentence φ, check if φ is finitely satisfiable.
Query containment for UCQ

\[q_1 \cup q_2 \cup q_3 \ldots \subseteq q'_1 \cup q'_2 \cup q'_3 \ldots \]

Note:

\[q_1 \cup q_2 \cup q_3 \ldots \subseteq q \quad \text{iff } q_1 \subseteq q \text{ and } q_2 \subseteq q \text{ and } \ldots \]

Theorem: \(q \subseteq q'_1 \cup q'_2 \cup q'_3 \ldots \) iff there exists some k such that \(q \subseteq q'_k \)
Query minimization

Definition: A conjunctive query q is minimal, if for every other query q' such that $q \equiv q'$, q' has at least as many predicates (subgoals) as q.

Are these queries minimal?

$q(x) :- R(x,y), R(y,z), R(x,x)$

$q(x) :- R(x,y), R(y,z), R(x,'Alice')$
Query minimization

- Algorithm:
 - Choose a subgoal g of q
 - Remove g: let q' be the new query
 - $q \subseteq q'$ \(\textbf{Why?}\)
 - If $q' \subseteq q$, then permanently remove g

- The order in which we inspect subgoals doesn’t matter
In practice

- No database system performs minimization
 - It’s hard
 - Users usually write minimal queries

- Non-minimal queries arise when using views intensely
Remember Semijoins?

\[R \bowtie S = \Pi_{A_1,\ldots,A_n} (R \bowtie S) \]
\[R \bowtie S = (R \bowtie S) \bowtie S \]

Prove that the following two datalog queries are equivalent:

\[q_1(x,y,z) : \neg R(x,y), S(x,z) \]
\[R_1(x,y) : \neg R(x,y), S(x,z) \]
\[q_2(x,y,z) : \neg R(x,y), S(x,z) \]
\[q_1(x,y,z) : \neg R(x,y), S(x,u), S(x,z) \]
\[q_2(x,y,z) : \neg R(x,y), S(x,u), S(x,z) \]
Semijoins

- Important in distributed databases
- Often combined with Bloom filters
- See 22.10.2 in the textbook
Semijoin Reducer

- Given a query: \(Q = R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n \)
- A **semijoin reducer** for \(q \) is:
 - \(R_{i1} = R_{i1} \bowtie R_{j1} \)
 - \(R_{i2} = R_{i2} \bowtie R_{j2} \)
 - ...
 - \(R_{ip} = R_{ip} \bowtie R_{jp} \)
- Such that the query is equivalent to:
 - \(Q = R_{k1} \bowtie R_{k2} \bowtie \ldots \bowtie R_{kn} \)
- In a **full reducer**, no dangling tuples remain
Example

- $Q = R(A,B) \bowtie S(B,C)$

- Semijoin reducer:

 $$R1(A,B) = R(A,B) \bowtie S(B,C)$$

- Re-written query: $Q = R1(A,B) \bowtie S(B,C)$

Are there any dangling tuples?
Example

- $Q = R(A,B) \bowtie S(B,C)$

- Full semijoin reducer:

 \[
 R_1(A,B) = R(A,B) \bowtie S(B,C) \\
 S_1(B,C) = S(B,C) \bowtie R_1(A,B)
 \]

- Re-written query: $Q = R_1(A,B) \bowtie S_1(B,C)$

No more dangling tuples
Example

More complex: \(Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D,E) \)

Full reducer:

\[
\begin{align*}
S'(B,C) &= S(B,C) \bowtie R(A,B) \\
T'(C,D,E) &= T(C,D,E) \bowtie S'(B,C) \\
S''(B,C) &= S'(B,C) \bowtie T'(C,D,E) \\
R'(A,B) &= R(A,B) \bowtie S''(B,C)
\end{align*}
\]

\(Q = R'(A,B) \bowtie S''(B,C) \bowtie T'(C,D,E) \)
Semijoin Reducer

- Example: $Q = R(A,B) \bowtie S(B,C) \bowtie T(C,A)$

- No full reducer

Theorem: A query has a full reducer iff it is “acyclic”.
Expressive power of FO

- Let $R(x,y)$ represent a graph
- Query $\text{path}(x,y) =$
 - All x,y such that there is a path from x to y

- Theorem: $\text{path}(x,y)$ cannot be expressed in FO
Non-recursive rules

- Graph $R(x,y)$

 \[
 \begin{align*}
 P(x,y) & : \ R(x,u), \ R(u,v), \ R(v,y) \\
 A(x,y) & : \ P(x,u), \ P(u,y)
 \end{align*}
 \]

- Can unfold into:

 \[
 A(x,y) : \ R(x,u), \ R(u,v), \ R(v,w), \ R(w,m), \ R(m,n), \ R(n,y)
 \]
Non-recursive datalog with negation

- Expresses FO queries
 - Negated subgoals
 - Implicit union

- Can evaluate in an order such that all body predicates have been evaluated.
Recursion

Two forms of transitive closure

Path(x,y) :- R(x,y)
Path(x,y) :- Path(x,u), R(u,y)

Path(x,y) :- R(x,y)
Path(x,y) :- Path(x,u), Path(u,y)
Recursion example

- EDB $\text{Par}(c, p) = p$ is parent of c

- Generalized cousins: people with common ancestors one or more generations back

$$\text{Sib}(x, y) : - \text{Par}(x, p), \text{Par}(y, p), x \neq y$$

$$\text{Cousin}(x, y) : - \text{Sib}(x, y)$$

$$\text{Cousin}(x, y) : - \text{Par}(x, xp), \text{Par}(y, yp), \text{Cousin}(xp, yp)$$
Definition of recursion

- Form a dependency graph whose nodes are IDB predicates
- Connect $X \rightarrow Y$ iff there is a rule with X in the head and Y in the body
- Cycle = recursion; no cycle = no recursion
Meaning of datalog rules

- **Model-theoretic**
 - Rules define a set of satisfying relations
 - Whenever body is true, head is true

- **Proof-theoretic**
 - Set of facts derivable from EDB relations by applying the rules.
Evaluating recursive rules

- This works if there is no negation
 - Start with all IDB relations empty
 - Repeatedly evaluate the rules using the EDB and the previous IDB to get the new IDB
 - End when there is no change in the IDB relations
“Naïve” evaluation algorithm

Start: IDB = ∅

Apply rules to IDB, EDB

Change to IDB? yes

no done
Semi-naïve evaluation

- Since the EDB never changes, on each round we only get new IDB tuples if we use at least one IDB tuple obtained in the previous round.

- Saves work; lets us avoid re-discovering most known facts.
 - Though a fact can still be derived in more than one way.
Par data: parent above child

Round 1

Round 2

Round 3
Recursion + negation

- Naïve evaluation doesn’t work when there are negated subgoals

- Negation wrapped in recursion makes no sense in general

- Even when they are separate, we can have ambiguity about the correct IDB relations
Stratified negation

- Stratification is a constraint usually placed on datalog with recursion and negation

- It rules out negation wrapped inside recursion
Example

\[
\begin{align*}
P(x) & :\, R(x) \land \neg Q(x) \\
Q(x) & :\, R(x) \land \neg P(x)
\end{align*}
\]

- Suppose \(R = \{(1)\} \)

- Two models satisfy the rules:
 - \(P = \{ \}, Q = \{1\} \)
 - \(P = \{1\}, Q = \{ \} \)
Stratum

- Intuitively, the stratum of an IDB predicate P is the maximum number of negations that can be applied to an IDB predicate used in evaluating P

- Stratified negation = finite strata
Stratum graph

- Nodes = IDB predicates
- Connect A → B if predicate A depends on B
- Label the edge “-” if the B subgoal is negated

- The stratum is the maximum number of “-” edges on a path leading from that node
- A datalog program is stratified if all its IDB predicates have finite strata
Example

\[P(x) :\neg R(x) \land \neg Q(x) \]
\[Q(x) :\neg R(x) \land \neg P(x) \]

- Not stratified
The stratified model

- When a datalog program is stratified, we can evaluate IDB predicates lowest-stratum-first.

- Once evaluated, treat it as EDB for higher strata.
Summary

- Query complexity
- Conjunctive queries
- Containment, equivalence, minimality
- Semijoin reductions
- Recursive datalog