Theory problems in databases

- Expressiveness of languages
 - Any query in L1 can be expressed in L2

- Complexity of languages
 - Bounds on resources required to evaluate any query in language L

- Static analysis of queries (for optimization)
 - Given q in L: is it minimal?
 - Given q1 and q2 in L: are they equivalent?

- Views
Crash review of complexity classes

- **AC⁰**
 - Circuits of $O(1)$ depth and polynomial size

- **L (LOGSPACE)**
 - Solvable in logarithmic (small) space

- **NL (NLOGSPACE)**
 - "YES" answers checkable in logarithmic space

- **NC**
 - Solvable efficiently (in polylogarithmic time) on parallel computers

- **P (PTIME)**
 - Solvable in polynomial time

- **NP**
 - "YES" answers checkable in polynomial time

- **PSPACE**
 - Solvable with polynomial memory
Rules of thumb

- **Step 1:** check if you can solve the problem “in that class”
- **Step 2:** if not, check if your problem “looks like” (is reducible from) the complete problem from the next class.

- Of interest: PTIME-complete are not efficiently parallelizable.
Query complexity

Given a query Q and a database D, what is the complexity of computing Q(D)?

The answer depends on the query language
- Relational algebra, calculus, datalog

Design tradeoff:
- High complexity \rightarrow rich queries
- Low complexity \rightarrow implemented efficiently
Complexity of query languages

Query Q, database D

- Data complexity
 - Fix Q, complexity $f(D)$
- Query complexity
 - Fix D, complexity $f(Q)$
- Combined complexity
 - Complexity $f(D,Q)$

Moshe Vardi
Conventions

- Complexity is usually defined for a decision problem
 - We study the complexity of Boolean queries

- Complexity usually assumes some encoding of the input
 - We encode instances using binary representation
Boolean queries

Definition: A Boolean query is a query that returns either true or false.

Non-Boolean

```
SELECT DISTINCT R.x, S.y
FROM   R, S
WHERE R.z = S.z
```

```
Q(x,y) :- R(x,z), S(z,y)
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
```

Boolean

```
SELECT DISTINCT 'yes'
FROM   R, S
WHERE R.x = 'a' and R.z = S.z
      and S.y = 'b'
```

```
Q :- R(x,z), S(z,y)
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
Answer() :- T('a','b')
```
Database encoding

- Encode $\mathbf{D} = (D, R_1^D, ..., R_k^D)$ as follows:
 - Let $n = |\text{ADom}(D)|$
 - If R_i has parity k, encode it as a string of n^k bits:
 - 0 means element $(a_1, ...a_k) \notin R_i^D$
 - 1 means element $(a_1, ...a_k) \in R_i^D$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Data complexity

- Fix a Boolean query Q in the query language. Determine the complexity of the following problem:
 - Given an input database instance $D = (D, R_1^D, \ldots, R_k^D)$ check if $Q(D) = \text{true}$
 - This is also known as model checking problem: check if D is a model for Q.
What is the complexity of relational queries?
Example

\[Q = \exists z. R('a', z) \land S(z, 'b') \]

Prove that \(Q \) is in \(AC^0 \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

\[Q = \exists z. R(\text{'a'}, z) \land S(z, \text{'b'}) \]

Prove that Q is in AC\(^0\)

Circuit of depth 2

<table>
<thead>
<tr>
<th>R: a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S: a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OR has n inputs

Each AND has 2 inputs
What is the complexity of relational queries?

All relational queries (expressible in RC) are in AC^0
What is the complexity of datalog queries?

\[
T(x,y) :- R(x,y) \\
T(x,y) :- T(x,z), R(z,y) \\
Answer() :- T(‘a’, ’b’) \\
\]
Datalog is not in AC^0

- Parity is not in AC^0
- We will reduce parity to the reachability problem
 - Given input $(x_1, x_2, x_3, x_4, x_5) = (0,1,1,0,1)$ construct the graph:

\[
\begin{align*}
T(x,y) & :- R(x,y) \\
T(x,y) & :- T(x,z), R(z,y) \\
\text{Answer()} & :- T(’a_1’,’b_6’)
\end{align*}
\]

The # of 1s is odd iff Answer is true
Datalog is in PTIME

- Fix any Boolean datalog program P.
- Given D, check if $P(D) = true$ is in PTIME

- Proof argument:
 - If an IDB has arity k, then it will reach its fixpoint in at most n^k iterations.
Conjunctive Queries (CQ)

- A subset of FO (first order)
 - Less expressive
- Many queries in practice are conjunctive
- Some optimizers only handle CQs
 - Break larger queries into many CQs
- CQs have “better” theoretical properties than arbitrary queries
Conjunctive Queries

- **R**: Extensional database (EDB) – stored
- **P**: Intentional database (IDB) – computed

Formula: $P(x,z) : \neg R(x,y) \& R(y,z)$

- **if**
- **variables**
- **subgoals**
- **conjunction**
- **head**
- **body**
- **implicit \exists**
Conjunctive Queries

- When facts in the body are true, we infer the head
- Consider all possible assignments of variables in the body

```
P(x,z) :- R(x,y) & R(y,z)
```
Conjunctive queries

- A single datalog rule
- Equivalent to SELECT-DISTINCT-FROM-WHERE
- Select/project/join in RA
- Existential/conjunctive fraction of RC

Strictly speaking, we are not allowed to have non-equality selection predicates
Example

Find all employees having the same manager as ‘Smith’

\[A(x) :\text{ ManagedBy(‘Smith’,y) \& ManagedBy(x,y) } \]

\[\text{SELECT DISTINCT m2.name} \]
\[\text{FROM ManagedBy m1, ManagedBy m2} \]
\[\text{WHERE m1.name = ‘Smith’ AND} \]
\[\quad \text{m1.manager = m2.manager} \]
Properties of CQ

- **Satisfiability**
 - A query is satisfiable if there exists some input relation R such that $q(R)$ is non-empty
 - **Every CQ is satisfiable**

- **Monotonicity**
 - A query is monotonic if for each instance I, J over the schema, $I \subseteq J$ implies $q(I) \subseteq q(J)$
 - **Every CQ is monotonic**
Satisfiability

We can always generate satisfying EDB relations from the body of the rule

\[S(x,y,z) \leftarrow P(x,w) \& R(w,y,v) \& P(v,z) \]

\[
\begin{array}{ccc}
S & P & R \\
a & c & e \\
& a & b \\
& d & e \\
b & c & d \\
d & e \\
\end{array}
\]
Monotonicity

\[
\text{ans}(u):- R_1(u_1) \& \ldots \& R_n(u_n)
\]

- Consider 2 databases \(I, J \), s.t. \(I \subseteq J \)
- Let \(t \in q(I) \)
 - For some substitution \(v \):
 - \(v(u_i) \in I(R_i) \) for each \(i \).
 - \(t = v(u) \)
 - Since \(I \subseteq J \), \(v(u_i) \in J(R_i) \) for each \(i \).
 - So \(t \in q(J) \)
Consequence of monotonicity

Product (pname, price, cid)
Company (cid, cname, city)

Q: Find all companies that make only products with price < 100!

```
SELECT DISTINCT C.cname
FROM Company C
WHERE 100 > ALL (SELECT price
    FROM Product P
    WHERE P.cid = C.cid)
```

- This query is not monotone
- Therefore, not CQ
- It cannot be expressed as a simple SFW query
Equivalence and containment

- Needed for a variety of static analysis tasks
 - Query optimization
 - Query rewriting using views
 - Testing for semijoin reductions
Definition: Queries q_1 and q_2 are **equivalent** if for every database D, $q_1(D) = q_2(D)$

Notation: $q_1 \equiv q_2$
Query containment

Definition: Queries q_1 is contained in q_2 if for every database D, $q_1(D) \subseteq q_2(D)$

Notation: $q_1 \subseteq q_2$

Fact: $q_1 \subseteq q_2$ and $q_2 \subseteq q_1$ iff $q_1 \equiv q_2$

For the case of Boolean queries, containment is logical implication.
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u,'Smith')$
$q_2(x) :- R(x,u), R(u,v)$
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :\text{-} R(x,u), R(u,v), R(v,w)$
$q_2(x) :\text{-} R(x,u), R(u,v)$
Examples

Is $q_1 \subseteq q_2$? No

$q_1(x) :\neg R(x,u), R(u,v), R(v,x)$
$q_2(x) :\neg R(x,u), R(u,x)$
Examples

Is \(q_1 \subseteq q_2 \) ? Yes

\[
q_1(x) :- R(x,u), R(u,y) \\
q_2(x) :- R(x,u), R(v,u), R(u,y)
\]
Examples

Is \(q_1 \subseteq q_2 \) ? \textbf{Yes}

\[
q_1(x) : \text{ R}(x,u), \text{ R}(u,v) \\
q_2(x) : \text{ R}(x,u), \text{ R}(x,y), \text{ R}(u,v), \text{ R}(u,w)
\]
Examples

Is \(q_1 \subseteq q_2 \)? Yes

\[
q_1(x) :\text{ } R(x,u), \text{ } R(u,u)
\]

\[
q_2(x) :\text{ } R(x,u), \text{ } R(u,v), \text{ } R(v,w)
\]
Query containment

Theorem: The query containment and query equivalence problems for CQ are NP-complete.

Theorem: The query containment and query equivalence problems for Relational Calculus are undecidable.
Query containment for CQ

- Two ways to test
 - Check if q2 holds on the canonical database of q1
 - Check if there exists a homomorphism $q_2 \rightarrow q_1$
 Canonical database

- Canonical database for q1 is \(D = (D, R_1^D, \ldots, R_k^D) \):
 - \(D \): all variables and constants in q1
 - \(R_1^D, \ldots, R_k^D \): the body of q1

- Canonical tuple \(t_{q1} \) is the head of q1
Example

q1(x,y) :- R(x,u), R(v,u), R(v,y)

- Canonical database $D = (D, R^D)$
 - $D = \{x, y, u, v\}$
 - $R^D = \begin{array}{cc}
 x & u \\
 v & u \\
 v & y \\
 \end{array}$
 - Canonical tuple $t_{q1} = (x, y)$
Example

q₁(x) :- R(x,u), R(u, ‘Smith’), R(u,’Fred’), R(u,u)

- Canonical database $\mathbf{D} = (D, R)$
 - $D = \{x,u,’Smith’,’Fred’\}$
 - $R = \begin{array}{c|c}
 x & u \\
 \hline
 u & ‘Smith’ \\
 \hline
 u & ‘Fred’ \\
 \hline
 u & u
 \end{array}$

- Canonical tuple $t_{q1} = (x)$
Checking containment using the canonical database

D={x, y, u, v}

R =

<table>
<thead>
<tr>
<th>x</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>u</td>
</tr>
<tr>
<td>v</td>
<td>y</td>
</tr>
</tbody>
</table>

q1(x,y) :- R(x,u), R(v,u), R(v,y)
q2(x,y) :- R(x,u), R(v,u), R(v,w), R(t,w), R(t,y)

q1 is contained in q2
A homomorphism $f: q_2 \rightarrow q_1$ is a function $f: \text{var}(q_2) \rightarrow \text{var}(q_1) \cup \text{const}(q_1)$, such that:

- $f(\text{body}(q_2)) \subseteq \text{body}(q_1)$
- $f(t_{q_1}) = t_{q_2}$
Example

\[\text{var}(q1) = \{x,u,v,y\} \]
\[\text{var}(q2) = \{x,u,v,w,t,y\} \]

\[q1(x,y) :- R(x,u), R(v,u), R(v,y) \]
\[q2(x,y) :- R(x,u), R(v,u), R(v,w), R(t,w), R(t,y) \]

q1 is contained in q2
Example

\[
\begin{align*}
\text{var}(q1) \cup \text{const}(q1) &= \{x,u,'Smith'\} \\
\text{var}(q2) &= \{x,u,v,w\}
\end{align*}
\]

\[
\begin{align*}
q1(x) &:\ R(x,u), \ R(u,'Smith'), \ R(u,'Fred'), \ R(u,u) \\
q2(x) &:\ R(x,u), \ R(u,v), \ R(u,'Smith'), \ R(w,u)
\end{align*}
\]

q1 is contained in q2
Complexity

Theorem: Checking containment of two CQs is NP-complete.

\[\Phi = (\neg X_3 \vee \neg X_1 \vee X_4) \land (X_1 \vee X_2 \vee X_3) \land (\neg X_2 \vee \neg X_3 \vee X_1) \]

Proof: Reduction from 3-SAT

Given a 3CNF \(\Phi \)

Step 1:

construct \(q_1 \) independently of \(\Phi \)

Step 2:

construct \(q_2 \) from \(\Phi \)

Prove:

there exists a homomorphism \(q_2 \rightarrow q_1 \) iff \(\Phi \) is satisfiable
Proof: Step 1

There are 4 types of clauses in every 3SAT:
Type 1: $\neg X \lor \neg Y \lor \neg Z$
Type 2: $\neg X \lor \neg Y \lor Z$
Type 3: $\neg X \lor Y \lor Z$
Type 4: $X \lor Y \lor Z$

For each type, q1 contains one relation with all 7 satisfying assignments, where $u=0$, $v=1$

<table>
<thead>
<tr>
<th>R1 (misses v,v,v)</th>
<th>R2 (misses v,v,u)</th>
<th>R3 (misses v,u,u)</th>
<th>R4 (misses u,u,u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \ u \ u$</td>
<td>$u \ u \ u$</td>
<td>$u \ u \ u$</td>
<td>$u \ u \ v$</td>
</tr>
<tr>
<td>$u \ u \ v$</td>
<td>$u \ u \ v$</td>
<td>$u \ u \ v$</td>
<td>$u \ v \ u$</td>
</tr>
<tr>
<td>$u \ v \ u$</td>
<td>$u \ v \ u$</td>
<td>$u \ v \ u$</td>
<td>$u \ v \ v$</td>
</tr>
<tr>
<td>$u \ v \ v$</td>
<td>$u \ v \ v$</td>
<td>$u \ v \ v$</td>
<td>$v \ u \ u$</td>
</tr>
<tr>
<td>$v \ u \ u$</td>
<td>$v \ u \ u$</td>
<td>$v \ u \ v$</td>
<td>$v \ u \ v$</td>
</tr>
<tr>
<td>$v \ u \ v$</td>
<td>$v \ u \ v$</td>
<td>$v \ v \ u$</td>
<td>$v \ v \ u$</td>
</tr>
<tr>
<td>$v \ v \ u$</td>
<td>$v \ v \ v$</td>
<td>$v \ v \ v$</td>
<td>$v \ v \ v$</td>
</tr>
</tbody>
</table>
Proof: Step 2

Constructing q2

q2 has one atom for each clause is Φ:
- Relation name is R1, or R2, or R3, or R4
- The variables are the same as those in the clause

Example:

$\Phi = (\neg X_3 \lor \neg X_1 \lor X_4) \land (X_1 \lor X_2 \lor X_3) \land (\neg X_2 \lor \neg X_3 \lor X_1)$

$q_2 = R2(x_3, x_1, x_4), R4(x_1, x_2, x_3), R2(x_2, x_3, x_1)$
Proof

- Suppose there is a satisfying assignment for Φ: it maps each X_i to either 0 or 1
 - Define function f: $\text{Vars}(q2) \rightarrow \text{Vars}(q1)$:
 - If $X_i = 0$ then $f(x_i) = u$
 - If $X_i = 1$ then $f(x_i) = v$
 - Then f is a homomorphism $f: q2 \rightarrow q1$
- Suppose there exists a homomorphism $f: q2 \rightarrow q1$
 - Define the assignment:
 - If $f(x_i) = u$ then $X_i = 0$
 - If $f(x_i) = v$ then $X_i = 1$
 - This is a satisfying assignment for Φ
Beyond CQ

- Containment for arbitrary relational queries is undecidable
- Any static analysis on relational queries is undecidable
- All these results follow from Trakhtenbrot’s theorem
Trakhtenbrot’s theorem

Definition: A sentence φ is called **finitely satisfiable** if there exists a finite database instance D s.t. $D \models \varphi$

Theorem: The following problem is undecidable:
Given FO sentence φ, check if φ is finitely satisfiable.
Query containment for UCQ

\[q_1 \cup q_2 \cup q_3 \ldots \subseteq q'_1 \cup q'_2 \cup q'_3 \ldots \]

Note:

\[q_1 \cup q_2 \cup q_3 \ldots \subseteq q \quad \text{iff} \quad q_1 \subseteq q \quad \text{and} \quad q_2 \subseteq q \quad \text{and} \ldots \]

Theorem: \[q \subseteq q'_1 \cup q'_2 \cup q'_3 \ldots \quad \text{iff} \quad \text{there exists some} \; k \quad \text{such that} \quad q \subseteq q'_k \]
Query minimization

Definition: A conjunctive query q is minimal, if for every other query q’ such that $q \equiv q'$, q’ has at least as many predicates (subgoals) as q

Are these queries minimal?

$q(x) : - R(x,y), R(y,z), R(x,x)$

$q(x) : - R(x,y), R(y,z), R(x,’Alice’) $
Query minimization

- **Algorithm:**
- Choose a subgoal g of q
- Remove g: let q' be the new query
- $q \subseteq q' \quad \text{Why?}$
- If $q' \subseteq q$, then permanently remove g

- The order in which we inspect subgoals doesn’t matter
In practice

- No database system performs minimization
 - It’s hard
 - Users usually write minimal queries

- Non-minimal queries arise when using views intensely
Remember Semijoins?

\[R \bowtie S = \Pi_{A_1, \ldots, A_n} (R \bowtie S) \]

\[R \bowtie S = (R \bowtie S) \bowtie S \]

Prove that the following two datalog queries are equivalent:

\[q_1(x,y,z) :- R(x,y), S(x,z) \]

\[q_2(x,y,z) :- R(x,y), S(x,u), S(x,z) \]

\[R_1(x,y) :- R(x,y), S(x,z) \]

\[q_2(x,y,z) :- R_1(x,y), S(x,z) \]

\[q_1(x,y,z) :- R(x,y), S(x,z) \]

\[q_2(x,y,z) :- R(x,y), S(x,u), S(x,z) \]
Semijoins

- Important in distributed databases
- Often combined with Bloom filters
- See 22.10.2 in the textbook
Semijoin Reducer

- Given a query: \(Q = R_1 \bowtie R_2 \bowtie ... \bowtie R_n \)
- A **semijoin reducer** for \(q \) is:
 - \(R_{i1} = R_{i1} \bowtie R_{j1} \)
 - \(R_{i2} = R_{i2} \bowtie R_{j2} \)
 - ...
 - \(R_{ip} = R_{ip} \bowtie R_{jp} \)
- Such that the query is equivalent to
 - \(Q = R_{k1} \bowtie R_{k2} \bowtie ... \bowtie R_{kn} \)
- In a **full reducer**, no dangling tuples remain
Example

- $Q = R(A,B) \bowtie S(B,C)$

- Semijoin reducer:

 $R_1(A,B) = R(A,B) \bowtie S(B,C)$

- Re-written query: $Q = R_1(A,B) \bowtie S(B,C)$

Are there any dangling tuples?
Example

- Q = R(A,B) ⋈ S(B,C)

- Full semijoin reducer:

 \[R_1(A,B) = R(A,B) \bowtie S(B,C) \]
 \[S_1(B,C) = S(B,C) \bowtie R_1(A,B) \]

- Re-written query: Q = R1(A,B) ⋈ S1(B,C)

No more dangling tuples
Example

- More complex: \(Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D,E) \)
- Full reducer:
 \[
 S'(B,C) = S(B,C) \bowtie R(A,B) \\
 T'(C,D,E) = T(C,D,E) \bowtie S'(B,C) \\
 S''(B,C) = S'(B,C) \bowtie T'(C,D,E) \\
 R'(A,B) = R(A,B) \bowtie S''(B,C)
 \]

- \(Q = R'(A,B) \bowtie S''(B,C) \bowtie T'(C,D,E) \)
Semijoin Reducer

- Example: \(Q = R(A,B) \bowtie S(B,C) \bowtie T(C,A) \)

- No full reducer

Theorem: A query has a full reducer iff it is “acyclic”.
Expressive power of FO

- Let $R(x,y)$ represent a graph
- Query $\text{path}(x,y) =$
 - All x,y such that there is a path from x to y

- Theorem: $\text{path}(x,y)$ cannot be expressed in FO
Non-recursive rules

- Graph $R(x,y)$

$$P(x,y) :- R(x,u), R(u,v), R(v,y)$$
$$A(x,y) :- P(x,u), P(u,y)$$

- Can unfold into:

$$A(x,y) :- R(x,u), R(u,v), R(v,w), R(w,m), R(m,n), R(n,y)$$
Non-recursive datalog with negation

- Expresses FO queries
 - Negated subgoals
 - Implicit union

- Can evaluate in an order such that all body predicates have been evaluated.
Recursion

Two forms of transitive closure

Path(x,y) :- R(x,y)
Path(x,y) :- Path(x,u), R(u,y)

Path(x,y) :- R(x,y)
Path(x,y) :- Path(x,u), Path(u,y)
Recursion example

- EDB $\text{Par}(c, p) = p$ is parent of c

- Generalized cousins: people with common ancestors one or more generations back

```
Sib(x, y) :- Par(x, p), Par(y, p), x ≠ y
Cousin(x, y) :- Sib(x, y)
Cousin(x, y) :- Par(x, xp), Par(y, yp), Cousin(xp, yp)
```
Definition of recursion

- Form a dependency graph whose nodes are IDB predicates
- Connect $X \rightarrow Y$ iff there is a rule with X in the head and Y in the body
- Cycle = recursion; no cycle = no recursion
Meaning of datalog rules

- **Model-theoretic**
 - Rules define a set of satisfying relations
 - Whenever body is true, head is true

- **Proof-theoretic**
 - Set of facts derivable from EDB relations by applying the rules.
Evaluating recursive rules

- This works if there is no negation
 - Start with all IDB relations empty
 - Repeatedly evaluate the rules using the EDB and the previous IDB to get the new IDB
 - End when there is no change in the IDB relations
“Naïve” evaluation algorithm

Start: IDB = ∅

Apply rules to IDB, EDB

Change to IDB?

yes

no

done
Semi-naïve evaluation

- Since the EDB never changes, on each round we only get new IDB tuples if we use at least one IDB tuple obtained in the previous round.

- Saves work; lets us avoid re-discovering most known facts.
 - Though a fact can still be derived in more than one way.
Par data: parent above child

Round 1
Round 2
Round 3
Recursion + negation

- Naïve evaluation doesn’t work when there are negated subgoals

- Negation wrapped in recursion makes no sense in general

- Even when they are separate, we can have ambiguity about the correct IDB relations
Stratified negation

- Stratification is a constraint usually placed on datalog with recursion and negation

- It rules out negation wrapped inside recursion
Example

\[
P(x) : \neg R(x) \land \neg Q(x) \\
Q(x) : \neg R(x) \land \neg P(x)
\]

- Suppose \(R = \{(1)\} \)

- Two models satisfy the rules:
 - \(P = \{ \}, Q=\{1\} \)
 - \(P=\{1\}, Q=\{ \} \)
Intuitively, the stratum of an IDB predicate P is the maximum number of negations that can be applied to an IDB predicate used in evaluating P

Stratified negation = finite strata
Stratum graph

- Nodes = IDB predicates
- Connect A \rightarrow B if predicate A depends on B
- Label the edge “-” if the B subgoal is negated

- The stratum is the maximum number of “-” edges on a path leading from that node
- A datalog program is stratified if all its IDB predicates have finite strata
Example

P(x) :- R(x) & \neg Q(x)
Q(x) :- R(x) & \neg P(x)

- Not stratified

\begin{tikzpicture}[->,>=stealth,thick,shorten >=1pt]
 \draw (0,0) -- (1,0) node [midway,left] {\texttt{P}};
 \draw (0,0) -- (0,1) node [midway,above] {\texttt{Q}};
\end{tikzpicture}
The stratified model

- When a datalog program is stratified, we can evaluate IDB predicates lowest-stratum-first

- Once evaluated, treat it as EDB for higher strata
Summary

- Query complexity
- Conjunctive queries
- Containment, equivalence, minimality
- Semijoin reductions
- Recursive datalog