Database design and implementation
CMPSCI 645

Lecture 01: Course Overview
Course resources

- Website:
 http://avid.cs.umass.edu/courses/645

- Moodle:
 https://moodle.umass.edu/
 - Assignment submission
 - Grades
Recommended textbook

Database Management Systems (3rd edition)

http://pages.cs.wisc.edu/~dbbook
Course Format

- MoWe, 10:35am–11:50am, CS 142
 - Combination of lecture and paper presentations

Homework deliverables
- Individual assignments and a group project

Exams
- A late midterm (some time in April)
This course covers the design and implementation of traditional relational database systems as well as advanced data management systems. The course will treat fundamental principles of databases such as the relational model, conceptual design, and schema refinement. We will also cover core database implementation issues including storage and indexing, query processing and optimization, and transaction management. Additionally, we will address challenges in modern networked information systems, including data mining, provenance, data stream management, and probabilistic databases.

Course work will include homework assignments, paper reviews, a (late) midterm, and a course project.

Prerequisites: an undergraduate-level course on databases or operating systems. 3 credits.

<table>
<thead>
<tr>
<th>Course Time:</th>
<th>Mo We 10:35 am - 11:50 am, CS 142</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor:</td>
<td>Alexandra Meliou</td>
</tr>
<tr>
<td>Contact:</td>
<td>ameli [at] cs [dot] umass [dot] edu</td>
</tr>
<tr>
<td>Office Hours:</td>
<td>TBA, CS 330</td>
</tr>
<tr>
<td>Teaching Assistant:</td>
<td>Wenzhao Liu</td>
</tr>
<tr>
<td>Contact:</td>
<td>wenzhao [at] cs [dot] umass [dot] edu</td>
</tr>
<tr>
<td>Office Hours:</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Recommended textbook:
Our recommended textbook is the 3rd Edition of "Database Management Systems" by Ramakrishnan and Gehrke. The textbook is available from Amazon. The lecture notes will be posted online after each class.
<table>
<thead>
<tr>
<th>week</th>
<th>date</th>
<th>day</th>
<th>topic</th>
<th>textbook</th>
<th>slides</th>
<th>deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>assignment</td>
</tr>
<tr>
<td>Week 1</td>
<td>Jan 19</td>
<td>Mon</td>
<td>No class: MLK day</td>
<td></td>
<td></td>
<td>project</td>
</tr>
<tr>
<td></td>
<td>Jan 21</td>
<td>Wed</td>
<td>Course overview</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Jan 26</td>
<td>Mon</td>
<td>Project overview and discussion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan 28</td>
<td>Wed</td>
<td>Relational Algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>Feb 2</td>
<td>Mon</td>
<td>SQL and datalog</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paper presentations

homework due

corresponding chapter in the book
Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework assignments</td>
<td>25%</td>
</tr>
<tr>
<td>Paper reviews and presentations</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm</td>
<td>25%</td>
</tr>
<tr>
<td>Project</td>
<td>35%</td>
</tr>
</tbody>
</table>
Assignments

- 3 homework assignments
 - Practical experience
 - Written problem sets
 - Late policy: 3 grace days, 10% penalty per day after that

- ~15 paper presentations
 - All students need to read the papers
 - Each student presents once in a group of 2-3
 - Each student needs to write a review for 4 papers

- Group project: more next week
Disclaimer

- The class is actively designed, so there may be changes to the content, structure, and assignment types.

- You are a crucial part of this development
 - Be vocal about the things you like and the things you don’t like
 - Feel free to make suggestions
Topics

- Fundamentals
 - Query languages
 - Relational design
 - Data modeling

- Theory
 - Expressiveness
 - Static analysis
 - Complexity

- Internals
 - Storage, indexing
 - Query processing, optimization
 - Transactions

- Advanced topics
 - Privacy
 - Probabilistic DB
 - Provenance
 - Parallel DB
Why database research is exciting

- One of the broadest areas
 - Well integrated theory and systems

- A microcosm of CS:
 - Languages, operating systems, data structures, theory, algorithms, distributed systems, statistics
What is a DBMS?

- A very large integrated collection of data
- A collection of software designed to store and manage data
 - Declarative interface
 - Efficient querying
 - Concurrent users
 - Reliable storage and recovery
 - Access control
What about file systems?

- Schema is limited
- No efficient way to access
- No specialized buffering
- No query language
- No recovery from failure
- Not safe concurrent access
Evolution

- Early DBMS’ (1960’s) evolved from file systems
- Many small items, many queries and updates
 - Banking
 - Airline reservations
- Hierarchical/network data model
 - Users think about the way data is stored
 - No high level language
The relational model

- E. F. Codd, 1970
 - Data independence
 - Declarative language
 - Mathematical foundation
Generality and Declarativity

- Programmers and users do not need to know about storage, indexes, sort orders, concurrent users, etc.
- Use logical model, high-level schema
- The DBMS determines how to retrieve the data
Levels of abstraction

- **Views**: how users see the data
- **Conceptual schema**: defines logical structure
- **Physical schema**: describes files and indices
Example: University database

- Conceptual schema:
 - Students(sid:integer, name:string)
 - Courses(cid:integer, name:string, semester:string)
 - Professor(fid:integer, name:string)
Designing a schema

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jill</td>
</tr>
<tr>
<td>2</td>
<td>Bo</td>
</tr>
<tr>
<td>3</td>
<td>Maya</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fid</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>621</td>
</tr>
<tr>
<td>1</td>
<td>645</td>
</tr>
<tr>
<td>3</td>
<td>390</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cid</th>
<th>name</th>
<th>sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>645</td>
<td>DB</td>
<td>F’12</td>
</tr>
<tr>
<td>621</td>
<td>Soft. Eng.</td>
<td>F’12</td>
</tr>
<tr>
<td>390</td>
<td>DB</td>
<td>S’13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brun</td>
</tr>
<tr>
<td>2</td>
<td>Meliou</td>
</tr>
<tr>
<td>3</td>
<td>Miklau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fid</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>621</td>
</tr>
<tr>
<td>2</td>
<td>645</td>
</tr>
<tr>
<td>2</td>
<td>390</td>
</tr>
</tbody>
</table>

- Convert to tables and constraints
- Physical design: disk layout, indices
Queries

- Find all courses that “Mary” takes

```sql
SELECT C.name
FROM Students S, takes T, Course C
WHERE S.name = "Mary" AND S.sid = T.sid
AND T.cid = C.cid
```

- Behind the scenes: the query processor figures out how to answer it efficiently
Behind the scenes

```
SELECT C.name
FROM Students S, takes T, Course C
WHERE S.name = "Mary" AND S.sid = T.sid
AND T.cid = C.cid
```

The optimizer chooses an execution plan
DBMSs and database research

- Huge industry
 - Large data warehouses
 - Distributed databases
 - Integration

- But: not all data is in a DBMS
 - Scientific data
 - Personal data
 - www

- Data management research has expanded
Trends

- Main memory systems
- Security and privacy
- Uncertain data
- Provenance
- Electronic commerce
- Social networking
- Large scale sensing applications
- Bioinformatics
Questions on course organization and content?

Feel free to ask the instructor or the TAs

For questions of general interest, please use the discussion forum on Moodle, so that other students can benefit from the answers