Life of a database theoretician

• Expressiveness of query languages
 – Any query in L1 can be expressed in L2
 – Query q cannot be expressed in L

• Complexity of languages
 – Bounds on resources required to evaluate any query in language L

• Static analysis of queries (for optimization)
 – Given q in L: is it minimal?
 – Given q1 and q2 in L: are they equivalent?

• Views
Coming lectures

• TODAY:
 – Overview of languages
 – Conjunctive queries (CQs)
 – Properties of CQs
 – Containment/equivalence for CQs

• Next Week
 – Adding recursion
 – Reasoning about views
Query languages

• So far we’ve seen:
 – Relational algebra
 – Relational calculus
 – SQL
Review: relational algebra

- Five operators:
 - Union: \(\cup \)
 - Difference: -
 - Selection: \(\sigma \)
 - Projection: \(\Pi \)
 - Cartesian Product: \(\times \)

- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join)
 - Renaming: \(\rho \)
Review: relational calculus

English: Name and sid of students who are taking the course “DB”

RA: $\Pi_{name,sid} (Students \bowtie\bowtie Takes \bowtie\bowtie \sigma_{name="DB"}(Course))$

RC: $\{ x_{name}, x_{sid} | \exists x_{cid} \exists x_{term} Students(x_{sid}, x_{name}) \land Takes(x_{sid}, x_{cid}) \land Course(x_{cid}, "DB", x_{term}) \}$
Review: SQL

Basic form:

```
SELECT attributes
FROM relations (possibly multiple, joined)
WHERE conditions (selections)
```
Query language classes

FO queries
- RA
- (safe) RC
- SFW +
 - UNION
 - EXCEPT

Recursive Queries
- single datalog rule

Conjunctive Queries
- Algebra
- Logic
- SQL

Expressiveness
Conjunctive Queries

abbreviated: CQ

- A **subset** of FO queries (i.e. less expressive)
- Many queries in practice are conjunctive
- Some optimizers handle only conjunctive queries - break larger queries into many CQs
- CQ’s have “better” theoretical properties than arbitrary queries
Conjunctive Queries

in rule-based (datalog) notation

- **R**: Extensional database (EDB) - stored
- **P**: Intentional database (IDB) - computed

```
P(x,z) ← R(x,y) & R(y,z)
```

Variables

Subgoals

Head

Body

“IF”

Conjunction

Implicit \exists
Conjunctive Queries

Intuitively: when facts in the body are true of stored relations, then we infer the fact in the head

\[P(x,z) :- R(x,y) \& R(y,z) \]

- More formally:
- Consider all possible substitutions: assignments of the variables in the body
Examples

EDB Relation: ManagedBy(emp,mgr)

A(x) :- ManagedBy("Smith",y) & ManagedBy(x,y)

All employees having the same manager as "Smith"
Defining answers to CQ

A substitution \(v \) is a function from variables into the domain. e.g. \(x \rightarrow a, y \rightarrow a, z \rightarrow b, u \rightarrow c \)

Let \(I \) be an instance, i.e. relations \(I(R_1) \ldots I(R_n) \)

A tuple \(t \) is in the answer \(q(I) \) if there is a substitution \(v \) s.t:
- \(v(u_1) \in I(R_1) \) for each \(i \), and
- \(t = v(u) \)

General form of a CQ \(q \):
\[
\text{ans}(u) \ :- \ R_1(u_1) \ & \ldots \ & R_n(u_n)
\]
e.g. \(u_i = (x, y, z) \)

\(v(u_i) = (a, a, b) \)
Examples

EDB Relation: ManagedBy(emp,mgr)

• Find all employees having the same director as Smith:

\[A(x) :- \text{ManagedBy(“Smith”,y), ManagedBy(y,z), ManagedBy(x,u), ManagedBy(u,z)} \]

(Your director is your manager’s manager)
Query language classes

- FO queries
- Recursive Queries
- Conjunctive Queries

RA:
- σ, π, \times
- single datalog rule

(safe) RC

SFW +
- UNION
- EXCEPT

Algebra
Logic
SQL

Expressiveness
CQ and RA

Relational Algebra:

- CQ correspond precisely to σ_C, Π_A, \times
 (missing: \cup, $-$)

$$A(x) :- \text{ManagedBy(“Smith”,y), ManagedBy(x,y)}$$
Query language classes

Conjunctive Queries: σ, π, \times

RA: single datalog rule

(safe) RC

Recursive Queries

RA

SFW +

UNION

EXCEPT

SQL
CQ and SQL

Rule-based:

\[
A(x) :- \text{ManagedBy}(\text{“Smith”}, y), \text{ManagedBy}(x, y)
\]

SQL:

```
select distinct m2.name
from ManagedBy m1, ManagedBy m2
where m1.name=“Smith” AND m1.manager=m2.manager
```

Notice “distinct”
Boolean queries

\[A() \text{ :- } \text{ManagedBy("Smith", } x\text{), ManagedBy("Sally", } x\text{)} \]

Is there someone who manages both Smith and Sally?

- **Returns:**
 - relation \{ \{ \} \} if the answer is yes
 - relation \{ \} if the answer is no
Properties of Conjunctive Queries

• Satisfiability
 – A query q is **satisfiable** if there exists some input relation I such that $q(I)$ is non-empty.
 – FACT: Every CQ is satisfiable.

• Monotonicity
 – A query q is **monotonic** if for each instance I, J over schema, $I \subseteq J$ implies $q(I) \subseteq q(J)$.
 – FACT: Every CQ is monotonic.
Satisfiability of CQs

We can always generate satisfying EDB relations from the body of the rule.

\[S(x,y,z) :- P(x,w) \land R(w,y,v) \land P(v,z) \]

\[
\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{b} \\
\text{c} \\
\text{d} \\
\text{d} \\
\text{e}
\end{array}
\]
Monotonicity of CQs

general form of a CQ q

\[
\text{ans}(u) :- R1(u1) \land \ldots \land Rn(un)
\]
e.g. ui = (x,y,z)

- Consider two databases I, J s.t. I \subseteq J.
- let \(t \in q(I) \).
 - Then for some substitution \(v \):
 - \(v(ui) \in I(Ri) \) for each \(i \).
 - \(t = v(u) \)
 - Since I \subseteq J, \(v(ui) \in J(Ri) \) for each \(i \)
 - So \(t \in q(J) \)
Consequence of monotonicity

Product (pname, price, category, maker)
Find products that are more expensive than all those produced by “Gizmo-Works”

```
SELECT  name
FROM     Product
WHERE  price >  ALL (SELECT price
                                        FROM     Purchase
                                        WHERE  maker=ʼGizmo-Worksʼ)
```

- This query is NOT monotone.
- Therefore, it is not in the class of conjunctive queries.
- It cannot be expressed as a simple SFW query.
Extensions of CQs
Query language classes

- FO queries
 - Conjunctive Queries: RA, σ, π, \times
 - Recursive Queries: (safe) RC

- Algebra
- Logic
- SQL

- RA: single datalog rule
- SFW + UNION EXCEPT
Extensions of CQ: disequality

\[\text{CQ} \neq \]

Find managers that manage at least 2 employees

\[A(y) :- \text{ManagedBy}(x,y), \text{ManagedBy}(z,y), x \neq z \]
Extensions of CQ: inequality

\[
\text{CQ<}
\]

Find employees earning more than their manager

\[
A(y) :- \text{ManagedBy}(x,y), \text{Salary}(x,u), \text{Salary}(y,v), u > v
\]

Additional EDB Relation: Salary(emp,money)
Extensions of CQ: negation

\[\text{CQ}^- \]

Find people sharing the same office with Alice, but with a different manager

\[A(y) \text{ :- Office("Alice",u), Office(y,u), ManagedBy("Alice",x), } \neg \text{ManagedBy(y,x)} \]

Additional EDB Relation: Office(emp,officenum)
Extensions of CQ: union

UCQ
Unions of conjunctive queries

Rule-based:

A(name) :- Employee(name, dept, age, salary), age > 50
A(name) :- RetiredEmployee(name, address)

Datalog notation is very convenient for expressing unions (no need for ∨)
Query language classes

Recursive Queries

FO queries

Expressiveness

Conjunctive Queries

RA: σ, π, \times

(safe) RC

SFW +

SQL

Union

EXCEPT

UCQ

CQ<

CQ≠

CQ−

RA: single datalog rule

SdFW
Extensions of CQ

• If we extend too much, we capture FO
 – Namely: CQs + Union, Negation

• Theoreticians need to be careful: small extensions may make a huge difference on certain theoretical properties of CQ
Query language classes

FO queries

Recursive Queries

FO queries

Conjunctive Queries

RA: σ, π, \times

UCQ

UCQ $^-$

CQ

CQ $^<$

CQ $^\neq$

CQ $^-$

RA: (safe) RC

SFW +

UNION

EXCEPT

SdFW

single datalog rule
Query Equivalence and Containment

• One kind of static analysis
• Useful for query optimization

• Intensively studied since 1977
Query Equivalence

```
SELECT x.name, x.manager
FROM    Employee x, Employee y
WHERE x.dept = 'Sales' and x.office = y.office
       and  x.floor = 5 and y.dept = 'Sales'
```

Hmmmm.... Is there a simpler way to write that?
Query Equivalence

- Queries q_1 and q_2 are equivalent if for every database D, $q_1(D) = q_2(D)$.

- Notation: $q_1 \equiv q_2$
Query Containment

• Query q_1 is **contained** in q_2 if for every database D, $q_1(D) \subseteq q_2(D)$.

• Notation: $q_1 \subseteq q_2$

• Obviously: $q_1 \subseteq q_2$ and $q_2 \subseteq q_1$ iff $q_1 \equiv q_2$

• Conversely: $q_1 \land q_2 \equiv q_2$ iff $q_1 \subseteq q_2$

We will study the containment problem only.
Sidenote: containment for Boolean queries

• Recall: q_1 is contained in q_2 if for every database D, $q_1(D) \subseteq q_2(D)$.

 – if q_1, q_2 are boolean they return \{ \langle \rangle \} or \{ \}

 – containment says:

 – whenever $q_1(D) = \{ \langle \rangle \}$ then $q_2(D) = \{ \langle \rangle \}$.

• Containment is implication: $q_1 \rightarrow q_2$
Examples of Query Containments

Is $q_1 \subseteq q_2$?

$q_1(x) :- R(x,y), R(y,z), R(z,w)$

$q_2(x) :- R(x,y), R(y,z)$
Examples of Query Containments

Is $q_1 \subseteq q_2$?

$q_1(x) :- R(x,y), R(y,z), R(z,x)$

$q_2(x) :- R(x,y), R(y,x)$

Counter-example
Examples of Query Containments

Is $q_1 \subseteq q_2$?

$q_1(x) \leftarrow R(x,u), R(u,u)$

$q_2(x) \leftarrow R(x,u), R(u,v), R(v,w)$

Example
Examples of Query Containments

Is $q_1 \subseteq q_2$?

$q_1(x) :- R(x,u), R(u, ”Smith”)$
$q_2(x) :- R(x,u), R(u,v)$
Query Containment

• **Theorem** Query containment for CQ is decidable and NP-complete.

(query complexity)
Checking containment

1. “Freeze” q_1
 - Replace variables by unique constants
 - $x \rightarrow a_x$, $u \rightarrow a_y$
 - this is called canonical database of q_1

2. Evaluate q_2 on frozen body of q_1

3. If frozen head is derived, then $q_1 \subseteq q_2$

$$q_1(x) :\text{-} R(x,u), R(u,u)$$

$$q_2(x) :\text{-} R(x,u), R(u,v), R(v,w)$$

Containment!
Why does this test work?

- If the test is negative, the canonical database constructed is a counterexample to containment.
- If the test is positive:
 - substitution $\mathbf{v}: \text{var}(q2) \rightarrow \text{"canonical domain"}$
 - this implies $\mathbf{f}: \text{var}(q2) \rightarrow \text{var}(q1) \cup \text{const}(q1)$
 - Now suppose $t \in q1(I)$ for any instance I
 - there is substitution $\mathbf{w}: \text{var}(q1) \rightarrow \text{domain}$
 - such that t is derived.
 - then \mathbf{f} followed-by \mathbf{w} is a substitution showing that t will be in $q2(I)$.

Query Homomorphisms

- A **homomorphism** $f : \mathbf{q}_2 \rightarrow \mathbf{q}_1$ is a function $f : \text{var}(\mathbf{q}_2) \rightarrow \text{var}(\mathbf{q}_1) \cup \text{const}(\mathbf{q}_1)$ such that:
 - $f(\text{body}(\mathbf{q}_2)) \subseteq \text{body}(\mathbf{q}_1)$
 - $f(\mathbf{t}_{\mathbf{q}_1}) = \mathbf{t}_{\mathbf{q}_2}$

The Homomorphism Theorem $\mathbf{q}_1 \subseteq \mathbf{q}_2$ iff there exists a homomorphism $f : \mathbf{q}_2 \rightarrow \mathbf{q}_1$

Chandra & Merlin 1977
The Homeomorphism Theorem

- **Theorem** Conjunctive query containment is:
 1. decidable (why ?)
 2. in NP (why ?)
 3. NP-hard

- In short: containment for CQs is NP-complete
Query Minimization

Definition A conjunctive query q is minimal if for every other conjunctive query q' s.t. $q \equiv q'$, q' has at least as many predicates (‘subgoals’) as q.

Are these queries minimal?

$q(x) :- R(x,y), R(y,z), R(x,x)$

$q(x) :- R(x,y), R(y,z), R(x,'Alice')$
Query Minimization

• Query minimization algorithm

Choose a subgoal g of q
Remove g: let q' be the new query
We already know $q \subseteq q'$ (why?)
If $q' \subseteq q$ then permanently remove g

• Notice: the order in which we inspect subgoals doesn’t matter
Other containment problems

• Extensions of CQs:
 – Unions of CQs
 – CQs with inequality

• FO queries
• Containment under constraints
• What about bags?
 – strange things happen
Containment under constraints

- Recall: query q_1 is **contained** in q_2 if for every database D, $q_1(D) \subseteq q_2(D)$.
- What if we know more about our input databases?
- Replace “every database D”, with:
 - “every database satisfying constraint C”

Containment under FD is NP-complete
Containment for FO queries

• **Theorem** Satisfiability for FO queries is undecidable

• **Lemma** Query containment/equivalence for FO is undecidable
 • if we had an algorithm for equivalence, we could use it to decide satisfiability of q:
 • check: $q \equiv \text{false}$

Consequence: we cannot do global query optimization for first-order queries.
Review

• CQs are an important fragment of FO
 – Equivalences: RA: $σ,π,\times$ SQL: S^dFW
 – Properties: satisfiable, monotonic
 – containment/equivalence decidable, NPC

• Expressiveness
 – CQs strictly less expressive than FO

• Hardness of static optimization