R-Trees for Spatial Indexing

Yanlei Diao
UMass Amherst
Feb 27, 2007

Spatial Indexing

- Applications: when we need to deal with n dimensional objects
 - Geographic Information Systems (GIS)
 - Very Large Scale Integrated Circuit (VLSI)
- Query workload: equality and range predicates in the n dimensional space
 - Find points in a polygon
 - Find polygons in a polygon
 - Find polygons overlapping with a polygon
 - Find polygons containing a polygon

R-tree: A Spatial Index

- Like B-tree
 - Height-balanced given arbitrary inserts/deletes.
 - Minimum 50% occupancy (except for root).
- Unlike B-tree
 - In a leaf node, data entry has the form <minimum bounding rectangle MBR, record id rid>
 - In a non-leaf node, index entry has the form <minimum bounding rectangle MBR, child node pointer p>
 - No particular order among data entries at the leaf level.
 - Why rectangles? Why not use a more precise description?
Search

- Given a n-dimensional search rectangle S, find all data entries that overlap with S.
 - At each non-leaf node, find all MBRs overlapping with S, follow their child pointers.
 - At each leaf node, find all MBRs overlapping with S, retrieve the corresponding data records.
 - For each data record, do a detailed comparison.
- Need to traverse multiple paths! (DFS)

Insert

- Insert a data entry $E <\text{MBR}, \text{rid}>$:
 - Step 1: Invoke ChooseSubtree to descend from the root and select a leaf node L for insertion.
 - Step 2: Insert E to L.
 - If L has room, insert E.
 - Otherwise, invoke SplitNode to split entries in L and E into the L node and a new LL node.
 - Step 3: Invoke AdjustTree to propagate changes upward, passing L and LL if split.
 - Adjust covering rectangles along the path bottom-up.
 - Propagate node splits as necessary.
ChooseSubtree

- **ChooseSubtree**: Descend from the root to select a leaf node for placing a new data entry E.
 - At each level of the tree, pick an index (data) entry using the least enlargement of the MBR. Ties broken by picking a MBR with the smallest area.
 - Heuristic-based algorithm. Other alternatives exist.
 - More on this when discussing R*-tree.

SplitNode

- **SplitNode**: Split M+1 entries (M from the node L, and the new entry E) between L and a new node LL.
 - **Exhaustive**: enumerate all legal subsets of all M+1 entries, considering the minimum occupancy requirement.
 - Guarantees to find the optimal split, but at an exponential cost!

SplitNode (Contd.)

- **SplitNode**: Split entries in the node L plus the new entry E between L and a new node LL.
 - **Quadratic**: sacrifice optimality for performance.
 - **Pick seeds**: Compute the area increase if two entries (Ei, Ej) are merged. Pick the pair with largest area increase, treat as the seeds for two groups.
 - **Split**: Greedily add other entries to the two groups by
 - picking the next E' that creates the max. difference in area increase between the two groups,
 - adding E' to the group with less area increase (ties resolved by picking the group with fewer entries).
SplitNode (Contd.)

- **SplitNode:** Split entries in the node \(L \) plus the new entry \(E \) between \(L \) and a new node \(LL \).
 - **Linear:** Like quadratic, but pick seeds differently.
 - For each dimension, pick the entry with lowest value and the other with the highest value, take the distance, normalize with the length of the dimension.
 - Among all, pick the dimension with highest normalized distance.
 - Treat the two extremes along that dimension as the seeds.
 - In practice, some systems (e.g. Postgres) seem to use the 50% minimum occupancy and quadratic split.

Delete

- **Remove a data entry \(E < MBR, rid > \):**
 - **Step 1:** Invoke \(\text{FindLeaf} \) to descend from the root and locate a leaf node \(L \) containing \(E \).
 - Like search may traverse multiple paths, but would expect just one match.
 - **Step 2:** Delete \(E \) from \(L \). Invoke \(\text{CondenseTree} \), passing \(L \), to adjust the tree.

CondenseTree

- **Start with a leaf node \(L \) with a data entry deleted.**
 - **Step 1:** Bottom-up adjustment. At each level, do:
 - If \(L \) has too few entries, delete \(L \) and its index entry in the parent node \(P \), add its entries \(<\text{entry}, \text{level}>\) to \(Q \) for reinsertions.
 - Otherwise, adjust its covering rectangle in \(P \).
 - Set \(L := P \), and repeat.
 - **Step 2:** Insert orphaned entries in \(Q \).
 - Use the Insert algorithm, but entries (including non-leaf ones) should be **inserted at the right level**.
 - Reinsertion incrementally refines the tree structure!
R*-tree

- Parameters of retrieval performance:
 - Area covered by a MBR, precisely, the area covered by a MBR but not its enclosed MBRs should be minimized.
 - Overlap between MBRs should be minimized.
 - Margin of a MBR, i.e., the sum of the lengths of edges of the MBR, should be minimized.
 - Benefit queries with quadratic rectangles.
 - Improve the structure.
 - Storage utility should be optimized.

Issues with R-tree

- Issues with R-tree:
 - SplitNode is designed to minimize the covering rectangles of the two nodes after split.
 - Can cause problems regarding other parameters.

Insert in R*-tree

- ChooseSubtree: Minimize different badness metrics depending on tree level:
 - Area cost at interior nodes, overlap cost at leaf nodes.
 - Why see?
- Interesting idea, but performance is only slightly better than R-tree.
- Can have some improvement in CPU cost, but benefit is not demonstrated.
Insert in R*-tree (Contd.)

- **SplitNode**: $O(NM\log M)$, more effective
 - For each dimension, sort entries by the lower value and then by upper value of their rectangles, $O(M\log M)$
 - For each sort, create $M-2m+2$ distributions of entries
 - k-th distribution: Group 1 $(m-1)+k$ entries, Group 2 contains the remaining entries.
 - Each group having $[m, M-m+1]$ entries implies $k \leq M-2m+2$.
 - For each distribution, compute goodness value based on (a) area-value, (b) margin-value, (c) overlap-value.
 - Select the best axis, choose the best distribution.
 - The algorithm here uses (b) to choose split axis, (c) to pick a distribution along that axis and (a) to break ties.

Forced Reinserts

- Structure varies with order of insertion.
 - Structure determined by earlier inserts is not suitable for good retrieval performance at the current situation.
 - Splits only cause local reorganization.
- So, force entries to be reinserted.
 - Used in R-tree to deal with deletion.
 - Used in R*-tree to handle entries in node splitting.
- Overflow treatment replaces node splitting.
 - Can reinsert both leaf and interior nodes.
 - For each entry to be reinserted, do it only if the call of OverflowTreatment is the first at a specific level.
 - Why? Reinsertion can go to the same node that needs to be treated. No need to reinsert any more in that case. Split instead.

Comments on Forced Reinserts

- Benefits:
 - decreases overlap of siblings
 - improves storage utilization
 - splits less often: causes better utilization?
 - shapes tend to be more quadratic: pack better, generate smaller parents...
- Experimental results show the best performance with reinsertion of 30% most “extreme” entries.
Comments on R*-tree

- Popular, because it outperforms R-tree on search.
- Problems:
 - Concurrency problems because of reinsertion.
 - Heuristics based, no formal analysis. Benefits proven empirically, but may vary with data sets used.
 - Not clear how different heuristics/algorithms contribute to the results, need some sort of cost decomposition.