Relational Query Languages

- A major strength of the relational model: supports simple, powerful querying of data.
- Relational query languages:
 - High-level declarative: say “what you want” not “how you get it”
 - Based on a formal mathematical model.
 - Allows for much optimization.
- Query Languages ≠ programming languages!
 - QLs not expected to be “Turing complete”.
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for implementation:
 - Relational Algebra: Operational, very useful for representing execution plans.
 - Relational Calculus: Declarative (lets users describe what they want, rather than how to compute it), useful for representing query semantics.
Preliminaries

- A query is applied to relation instances. The result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed.
 - Schema for the result of a given query is also fixed.
 - Determined by definition of query language constructs.
- How to name fields in queries?
 - Positional notation easier for formal definitions.
 - Named-field notation more readable.
 - Both used in SQL.

Relational Algebra

- Basic operations:
 - Selection (σ) Selects a subset of rows from relation.
 - Projection (π) Deletes unwanted columns from relation.
 - Cross-product (×) Allows us to combine two relations.
 - Set-difference (−) Tuples in reln. 1, but not in reln. 2.
 - Union (∪) Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, join, division, renaming
 - Not essential, but (very!) useful.

Closure Property

- Each operation takes one or more relations and returns a relation.
 - Data model for input and output of an operation is relation.
 - Algebra is closed with respect to the data model.
- Given closure property, operations can be composed!
Example Instances

- “Sailors” and “Reserves” relations for our examples.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list.
- Projection operator has to eliminate duplicates! (Why??)
 - Note: real systems typically don’t do duplicate elimination unless the user explicitly asks for it. (Why not?)

<table>
<thead>
<tr>
<th>sname</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>yuppy</td>
<td>9</td>
</tr>
<tr>
<td>lubber</td>
<td>8</td>
</tr>
<tr>
<td>guppy</td>
<td>5</td>
</tr>
<tr>
<td>rusty</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0</td>
</tr>
<tr>
<td>55.5</td>
</tr>
</tbody>
</table>

Selection

- Selects rows that satisfy selection condition.
- Schema of result identical to schema of (only) input relation.
 - No duplicates in result!
- Operator composition: Result relation can be the input for another operation.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[\pi_{\text{rating}}(\sigma_{\text{rating}>8}(S2)) \]
Union, Intersection, Set-Difference

- Set operations:
 - Union
 - Intersection
 - Set-Difference
- All of them take two input relations, which must be union-compatible:
 - Same number of fields.
 - 'Corresponding' fields have the same type.
- What is the schema of result?

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Example Set Operations

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

SIUS2

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

SI\(\cap\)S2

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names 'inherited' if possible.
 - Conflict: Both S1 and R1 have a field called **sid**.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>sid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>22</td>
<td>101</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>31</td>
<td>103</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>58</td>
<td>103</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
<td>31</td>
<td>103</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
<td>58</td>
<td>103</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>58</td>
<td>103</td>
</tr>
</tbody>
</table>

* Renaming operator: \(\rho\) (\(C(1 \rightarrow \text{sid}1, 5 \rightarrow \text{sid}2), \text{S1} \times \text{R1})\)
Joins

- **Condition Join**: \(R \bowtie_c S = \alpha_c (R \times S) \)

<table>
<thead>
<tr>
<th>(sid)</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

- **Result schema** same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a *theta-join*.

Joins

- **Equi-Join**: A special case of condition join where the condition \(c \) contains only equalities.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>31</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

- **Result schema** similar to cross-product, but only one copy of fields for which equality is specified.
- **Natural Join**: Equijoin on all common fields.

Division

- Not supported as a primitive operator, but useful for expressing queries like: *Find sailors who have reserved all boats.*
- Let \(A \) have 2 fields, \(x \) and \(y \); let \(B \) have only field \(y \):
 - \(A/B = \left\{ x \right\} \in A \exists \left\{ y \right\} \in B \)
 - i.e., \(A/B \) contains all \(x \) tuples (sailors) such that for every \(y \) tuple (boat) in \(B \), there is an \(xy \) tuple in \(A \).
 - Or: If the set of \(y \) values (boats) associated with an \(x \) value (sailor) in \(A \) contains all \(y \) values in \(B \), the \(x \) value is in \(A/B \).
 - In general, \(x \) and \(y \) can be any lists of fields.
 - \(y \) is the list of fields in \(B \), and \(x \cup y \) is the list of fields of \(A \).
Examples of Division A/B

<table>
<thead>
<tr>
<th>s1</th>
<th>p1</th>
<th>pno</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>p2</td>
<td>p2</td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>p3</td>
<td>p4</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
<td></td>
<td>B2</td>
</tr>
<tr>
<td>s2</td>
<td>p2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>p2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>p2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>p4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A $A/B1$ $A/B2$ $A/B3$

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- Idea: For A/B, compute all x values that are not disqualified by some y value in B.
 - Disqualified x values: $\pi_x (\pi_x (A) \times B) - A$
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

Find names of sailors who’ve reserved boat #103

- Solution 1: $\pi_{sname}(\sigma_{bid=103}(Reserves) \bowtie Sailors)$
- Solution 2: $\rho (Temp1, \sigma_{bid=103}(Reserves))$
 - $\rho (Temp1, \sigma_{bid=103}(Reserves))$
 - $\pi_{sname}(Temp2)$
- Solution 3: $\pi_{sname}(\sigma_{bid=103}(Reserves \bowtie Sailors))$
 - Algebraic equivalences!
Find names of sailors who’ve reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
 \[\pi_{\text{name}}((\sigma_{\text{color} = \text{red}} \text{Boats}) \bowtie \text{Reserves} \bowtie \text{Sailors}) \]

Find sailors who’ve reserved a red or a green boat

- Can identify all red or green boats, then find sailors who’ve reserved one of these boats:
 \[\rho (\text{Tempboats}, (\sigma_{\text{color} = \text{red}} \lor \text{color} = \text{green} \text{Boats})) \]
 \[\pi_{\text{name}}(\text{Tempboats} \bowtie \text{Reserves} \bowtie \text{Sailors}) \]

- Can also define Tempboats using union! (How?)
- What happens if \(\lor \) is replaced by \(\land \) in this query?

Find sailors who’ve reserved a red and a green boat

- Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):
 \[\rho (\text{Tempred}, \pi_{\text{sid}}((\sigma_{\text{color} = \text{red}} \text{Boats}) \bowtie \text{Reserves})) \]
 \[\rho (\text{Tempgreen}, \pi_{\text{sid}}((\sigma_{\text{color} = \text{green}} \text{Boats}) \bowtie \text{Reserves})) \]
 \[\pi_{\text{name}}((\text{Tempred} \cap \text{Tempgreen}) \bowtie \text{Sailors}) \]
Find the names of sailors who’ve reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:

 \[\rho (\text{Tempsid}, (\pi_{\text{sid}, \text{bid}} \text{Reserves}) / (\pi_{\text{bid}} \text{Boats})) \]

 \[\pi_{\text{name}}(\text{Tempsid} \bowtie \text{Sailors}) \]

- To find sailors who’ve reserved all ‘Interlake’ boats:

 \[\sigma_{\text{name}} (\bowtie_{\text{bid}} \text{name} = \text{'Interlake'} \text{Boats}) \]

Relational Calculus

- Relational Calculus uses variables, constants, comparison ops, logical connectives and quantifiers.
- Two forms: Tuple relational calculus (TRC) and Domain relational calculus (DRC).
 - TRC: Variables range over (i.e., get bound to) tuples.
 - DRC: Variables range over domain elements (field values).
- Both are simple subsets of first-order logic.
- Formulas: expressions in the calculus.
- An answer tuple: an assignment of constants to variables that make the formula evaluate to true.

Domain Relational Calculus

- Query has the form:

 \[p(x_1, x_2, \ldots, x_n) \]

- Answer includes all tuples \((x_1, x_2, \ldots, x_n) \) that make the formula \(p(x_1, x_2, \ldots, x_n) \) be true.
- Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.
DRC Formulas

- **Atomic formula:**
 - \[\{x_1, x_2, \ldots, x_n\} \in \text{Rname} \text{, or } X \text{ op } Y \text{, or } X \text{ op constant} \]
 - \text{op} \text{ is one of } \{<, >, =, \leq, \geq, \neq\}

- **Formula:**
 - an atomic formula, or
 - \(p \lor q \), where \(p \) and \(q \) are formulas, or
 - \(\exists X (p(X)) \), where variable \(X \) is free in \(p(X) \), or
 - \(\forall X (p(X)) \), where variable \(X \) is free in \(p(X) \)

- The use of quantifiers \(\exists X \) and \(\forall X \) is said to **bind** \(X \).
 - A variable that is not bound is free.

Free and Bound Variables

- The use of quantifiers \(\exists X \) and \(\forall X \) in a formula is said to **bind** \(X \).
 - A variable that is not bound is free.

- Let us revisit the definition of a query:
 \[
 \{x_1, x_2, \ldots, x_n\} \models p\{x_1, x_2, \ldots, x_n\}
 \]

- There is an important restriction: the variables \(x_1, ..., x_n \) that appear to the left of `|` must be the only free variables in the formula \(p(...) \).

Find all sailors with a rating above 7

- The condition \(\{I, N, T, A\} \in \text{Sailors} \land T > 7 \) ensures that the domain variables \(I, N, T \) and \(A \) are bound to fields of the same Sailors tuple.

- The term \(\{I, N, T, A\} \) to the left of `|` (which should be read as such that) says that every tuple \(\{I, N, T, A\} \) that satisfies \(T > 7 \) is in the answer.

- Modify this query to answer:
 - Find sailors who are older than 18 or have a rating under 9, and are called 'Joe'.
Find sailors who have reserved boat #103

\[\{ I, N, T, A \} \land (I, N, T, A) \in \text{Sailors} \land T > 7 \land \exists I, Br, D \ (I, Br, D) \in \text{Reserves} \land I \in \text{I} \land Br = 103 \]

- We have used \(\exists I, Br, D \ (\ldots) \) as a shorthand for \(\exists I (\exists Br (\exists D (\ldots))) \)
- Note the use of \(\exists \) to find a tuple in Reserves that 'joins with' the Sailors tuple under consideration.

Find sailors who have reserved a red boat

\[\{ I, N, T, A \} \land (I, N, T, A) \in \text{Sailors} \land T > 7 \land \exists I, Br, D \ (I, Br, D) \in \text{Reserves} \land I \in \text{I} \land \exists B, BN, C \ (B, BN, C) \in \text{Boats} \land B = Br \land C = \text{red} \]

- Observe how the parentheses control the scope of each quantifier's binding.
- This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, QBE)

Find sailors who’ve reserved all boats

\[\{ I, N, T, A \} \land (I, N, T, A) \in \text{Sailors} \land \forall B, BN, C \ (|B, BN, C| \in \text{Boats} \lor \exists I, Br, D \ (I, Br, D) \in \text{Reserves} \land I = I \land Br = B) \]

- Find all sailors \(I \) such that for each 3-tuple \(|B, BN, C| \)
 either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor \(I \) has reserved it.
Find sailors who’ve reserved all boats (again!)

\[\forall (B, BN, C) \in \text{Boats} \exists (I, Br, D) \in \text{Reserves} \mid I = Ir \land Br = B\]

- Simpler notation, same query. (Much clearer!)
- To find sailors who’ve reserved all red boats:
 \[\forall (C \neq \text{red}) \exists (I, Br, D) \in \text{Reserves} \mid I = Ir \land Br = B\]

Unsafe Queries, Expressive Power

- It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called unsafe.
 - e.g., \[I \in \text{Sailors} \land I \in \text{Reserves}\]
- It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.
Summary (Contd)

- Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
- Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.

Questions