The Evils of Redundancy

- Redundancy is at the root of several problems associated with relational schemas:
 - redundant storage
 - insert anomaly
 - delete anomaly
 - update anomaly
- Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.

Schema Refinement

- Main refinement technique: decomposition
 - E.g., replacing ABCD with AB and BCD, or ACD and ABD.
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation? Theory on normal forms.
 - What problems (if any) does the decomposition cause? Properties of decomposition include lossless-join and dependency-preserving.
 - Decomposition can cause performance problems.
Functional Dependencies (FDs)

- A functional dependency \(X \rightarrow Y \) holds over relation \(R \) if for all allowable instance \(r \) of \(R \):
 - \(t_1 \in r, t_2 \in r, \pi_X(t_1) = \pi_X(t_2) \) implies \(\pi_Y(t_1) = \pi_Y(t_2) \), where \(X \) and \(Y \) are sets of attributes.
- An FD is a statement about all allowable relations.
 - Must be identified based on semantics of application.
 - Given an allowable instance \(r \) of \(R \), we can check if \(r \) violates some FD \(f \), but we cannot tell if \(f \) holds over \(R \).
- \(K \) is a candidate key for \(R \) means that \(K \rightarrow R \)
 - However, \(K \rightarrow R \) does not require \(K \) to be minimal!

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (seq, name, lot, rating, hrly_wages, hrs_worked)
- **Notation:** We will denote this relation schema by listing the attributes: \(\text{SNLRWH} \)
 - This is really the set of attributes \(\{S,N,L,R,W,H\} \).
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - \(\text{seq} \) is the key: \(S \rightarrow \text{SNLRWH} \)
 - \(\text{rating} \) determines \(\text{hrly}_wages: R \rightarrow W \)

Example (Contd.)

- Problems due to \(R \rightarrow W \):
 - **Redundant storage:** Can we change \(W \) in just the 1st tuple of \(\text{SNLRWH} \)?
 - **Insertion anomaly:** What if we want to insert an employee and don’t know the hourly wage for his rating?
 - **Deletion anomaly:** If we delete all employees with rating \(5 \), we lose the information about the wage for rating \(5 \)!

Will 2 smaller tables be better?
Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - Given \(ssn \to did, \ did \to lot \) implies \(ssn \to lot \)
- An FD \(f \) is implied by a set of FDs \(F \), if \(f \) holds for every retn instance that satisfies all FDs in \(F \).
- \(F^+ \) is the closure of \(F \) is the set of all FDs that are implied by \(F \).
- Armstrong’s Axioms (\(X, Y, Z \) are sets of attributes):
 - Reflexivity: If \(X \subseteq Y \), then \(Y \to X \)
 - Augmentation: If \(X \to Y \), then \(XZ \toYZ \) for any \(Z \)
 - Transitivity: If \(X \to Y \) and \(Y \to Z \), then \(X \to Z \)

Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from AA):
 - Union: If \(X \to Y \) and \(X \to Z \), then \(X \toYZ \)
 - Decomposition: If \(X \toYZ \), then \(X \to Y \) and \(X \to Z \)
- These are sound and complete inference rules for FDs!
 - Soundness: when applied to a set \(F \) of FDs, the axioms generate only FDs in \(F^+ \).
 - Completeness: repeated application of these axioms will generate all FDs in \(F^+ \).

Reasoning About FDs (Contd.)

- Computing the closure \(F^+ \) can be expensive: computes for all FD’s; size of closure is exponential in # attrs!
- Typically, we just want to check if a given FD \(X \to Y \) is in \(F^+ \).
 - An efficient check:
 - Compute attribute closure of \(X \) (denoted \(X^* \)) w.r.t. \(F \), i.e., the largest attribute set \(A \) such that \(X \to A \) is in \(F^+ \).
 - Simple algorithm: DO if there is \(U \to V \) in \(F \) s.t. \(U \subseteq X^* \), then \(X^* = X^*U \)
 - Check if \(Y \) is in \(X^* \).
 - Does \(F = \{ A \to B, B \to C, C \to D \to E \} \) imply \(A \to E \)?
 - i.e., is \(A \to E \) in the closure \(F^+ \)? Equivalently, is \(E \) in \(A^* \)?
Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!

If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain redundancy related problems are avoided/minimized.

This helps us decide if decomposing the relation will help.

Role of FDs in detecting redundancy:
- Consider a relation R with 3 attributes, ABC.
- No FDs hold: There is no redundancy here.
- Given A \rightarrow B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if \forall X \rightarrow A (X is a set of attributes, A is an attribute) in F⁺:
 - A \in X (called a trivial FD), or
 - X is a superkey (i.e., contains a key) for R.
- R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
 - Can we infer the value marked by '?'?
 - Is the relation in BCNF?
 - If a reln is in BCNF, every field of every tuple records a piece of information that can't be inferred (using only FD's) from values in other fields.

BCNF ensures that no redundancy can be detected using FDs!

Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if \forall X \rightarrow A in F⁺:
 - A \in X (called a trivial FD), or
 - X is a superkey for R, or
 - A is part of some key for R.
- Minimality of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible.
 - E.g., Reserves (Sailor, Boat, Date, Credit_card) with S \rightarrow C, C \rightarrow S is in 3NF. But for each reservation of sailor S, same (S, C) pair is stored.
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible. (not true for BCNF)
What Does 3NF Achieve?

- If 3NF violated by $X \rightarrow A$, one of the following holds:
 - X is a subset of some key K:
 - $X \rightarrow A$ is partial dependency.
 - We store (X, A) pairs redundantly.
 - X is not a proper subset of any key:
 - There is a chain of FDs $K \rightarrow X \rightarrow A$, transitive dependency, where A is not part of any key including K.
 - It means that we cannot associate an X value with a K value unless we also associate an A value with an X value.

Hierarchy of Normal Forms

- 1st normal form 1NF: no set-valued attributes.
- 2nd normal form 2NF: no partial dependencies.
- 3rd normal form 3NF: 2NF, and no transitive dependencies.
- Boyce-Codd normal form BCNF: 3NF, and no $X \rightarrow A$ s.t. A is part of a key. No redundancy detected by FDs.
- 4th normal form 4NF: BCNF and no multi-valued dependencies (MVD). No redundancy detected by FDs and MVD.
 - We won’t discuss in detail in this class.

Decomposition of a Relation Scheme

- A decomposition of R replaces R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of at least one new relation.
- As a result, we will store instances of the relation schemes produced by the decomposition, instead of instances of R.
Example Decomposition

- Decompositions should be used only when needed.
 - SNLWH has FDs S \rightarrow SNLWH and R \rightarrow W.
 - R \rightarrow W causes violation of 3NF; W values repeatedly associated with R values.
 - Easiest way to fix this is to create a relation RW to store these associations, and to remove W from the main schema:
 - i.e., we decompose SNLWH into SNLRH and RW.
- If we just store the projections of SNLWH tuples onto SNLRH and RW, are there any potential problems that we should be aware of?

Problems with Decompositions

- Three potential problems to consider:
 1. Some queries become more expensive.
 - e.g., How much did sailor Joe earn? (salary = W*H)
 2. Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Fortunately, not in the SNLWH example.
 3. Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLWH example.
- Tradeoff: Must consider these issues vs. redundancy.

Lossless Join Decompositions

- Decomposition of R into X and Y is \textit{lossless-join} w.r.t. a set of FDs F if \forall instance r that satisfies F:
 - \pi_X(r) \bowtie \pi_Y(r) = r
- It is always true that r \subseteq \pi_X(r) \bowtie \pi_Y(r)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2).)
More on Lossless Join

- The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 - X ∩ Y → X, or
 - X ∩ Y → Y

- In particular, if U → V holds over R, the decomposition of R into UV and R - V is lossless-join.

Dependency Preserving Decomposition

- Consider CSJDPQV, C is key, JP → C and SD → P.
 - BCNF decomposition: CSJDQV and SDP
 - Problem: Checking JP → C requires a join!

- Dependency preserving decomposition:
 - Intuitively, if R is decomposed into X and Y, and we enforce the FDs that hold on X and Y respectively, all FDs that were given to hold on R must also hold. (Aside: Problem 3)

- Projection of set of FDs F:
 - If R is decomposed into X, ..., projection of F onto X (denoted F[X]) is the set of FDs U → V in closure F⁺ such that U, V are both in X.

Dependency Preserving Decompositions (Contd.)

- Formally, decomposition of R into X and Y is dependency preserving if (F[X] union F[Y])⁺ = F⁺

- Important to consider F⁺, not F, in this definition:
 - ABC, A → B, B → C, C → A, decomposed into AB and BC.
 - Is this dependency preserving? Is C → A preserved?

- Dependency preserving does not imply lossless join:
 - ABC, A → B, decomposed into AB and BC.

- And vice-versa! (Example?)
Decomposition into BCNF

- Consider relation R with FDs F. If X → Y violates BCNF, decompose R into R - Y and XY.
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDQV, key C, JP → C, SD → P, J → S
 - To deal with SD → P, decompose into SDP, CSJDQV.
 - To deal with J → S, decompose CSJDQV into JS and CJDQV

- Several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS → Z, Z → C
 - Not in BCNF; can’t decompose while preserving 1st FD.
- Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).
 - However, it is a lossless join decomposition.
 - Adding JPC to the collection of relations gives a dependency preserving decomposition. JPC tuples stored only for checking FD! (Redundancy!)

Decomposition into 3NF

- Obviously, the algorithm for lossless join decom into BCNF can be used to obtain a lossless join decom into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
 - If X → Y is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to ‘preserve’ JP → C. What if we also have J → C?
- Refinement: Instead of the given set of FDs F, use a minimal cover for F.
Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of $F = \text{closure of } G$.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and “as small as possible” in order to get the same closure as F.
- e.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$

has the following minimal cover:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$ and $EF \rightarrow H$

Summary of Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.

Questions