Schema Refinement and Normal Forms

Yanlei Diao
UMass Amherst
April 10 & 15, 2007
Case Study: The Internet Shop

- **DBDudes Inc.**: a well-known database consulting firm
- **Barns and Nobble (B&N)**: a large bookstore specializing in books on horse racing
- **B&N** decides to go online, asks DBDudes to help with the database design and implementation
Redundant Storage

Orders

<table>
<thead>
<tr>
<th>ordernum</th>
<th>isbn</th>
<th>cid</th>
<th>cardnum</th>
<th>qty</th>
<th>order_date</th>
<th>ship_date</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>0-07-11</td>
<td>123</td>
<td>40241160</td>
<td>2</td>
<td>Jan 3, 2006</td>
<td>Jan 6, 2006</td>
</tr>
<tr>
<td>120</td>
<td>1-12-23</td>
<td>123</td>
<td>40241160</td>
<td>1</td>
<td>Jan 3, 2006</td>
<td>Jan 11, 2006</td>
</tr>
<tr>
<td>120</td>
<td>0-07-24</td>
<td>123</td>
<td>40241160</td>
<td>3</td>
<td>Jan 3, 2006</td>
<td>Jan 26, 2006</td>
</tr>
</tbody>
</table>

Orderlists

<table>
<thead>
<tr>
<th>ordernum</th>
<th>isbn</th>
<th>qty</th>
<th>ship_date</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>0-07-11</td>
<td>2</td>
<td>Jan 6, 2006</td>
</tr>
<tr>
<td>120</td>
<td>1-12-23</td>
<td>1</td>
<td>Jan 11, 2006</td>
</tr>
<tr>
<td>120</td>
<td>0-07-24</td>
<td>3</td>
<td>Jan 26, 2006</td>
</tr>
</tbody>
</table>

Redundant Storage!
The Evils of Redundancy

- **Redundancy** is at the root of several problems associated with relational schemas:
 - Redundant storage
 - Operation (insert, delete, update) anomalies

- Integrity constraints, in particular *functional dependencies*, can be used to identify schemas with such problems and to suggest refinements.
 - ICs that we have learned: *domain constraints*, *primary key*, *candidate key*, *foreign key*
 - A new type of IC: *functional dependencies*
Schema Refinement

- Main refinement technique: decomposing a relation into multiple smaller ones

- Decomposition should be used judiciously:
 - Is there reason to decompose a relation? Theory on normal forms.
 - What problems (if any) does the decomposition cause? Properties of decomposition include lossless-join and dependency-preserving.
 - Decomposition can cause performance problems. E.g. a previous selection now requires a join!
Functional Dependencies (FDs)

- A functional dependency $X \rightarrow Y$ holds over relation R if \forall allowable instance r of R:
 - $t1 \in r, t2 \in r, \pi_X(t1) = \pi_X(t2)$ implies $\pi_Y(t1) = \pi_Y(t2)$, X and Y are sets of attributes.

- An FD is a statement about \textit{all} allowable relations.
 - Must be identified based on semantics of application.
 - Given an allowable instance $r1$ of R, we can check if $r1$ violates some FD f, but we cannot tell if f holds over R!

- K is a candidate key for R means that $K \rightarrow R$.
 - However, $K \rightarrow R$ does not require K to be \textit{minimal}!
Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

- **Notation**: denote this relation schema by listing all its attributes: SNLRWH

- Some FDs on Hourly_Emps:
 - ssn is the key: S → SNLRWH
 - rating determines hrly_wages: R → W
Example (Contd.)

- Problems due to $R \rightarrow W$:
 - **Redundant storage**
 - **Update anomaly**: Can we change W in just the 1st tuple of SNLRWH?
 - **Insertion anomaly**: What if we want to insert an employee and don’t know the hourly wage for his rating?
 - **Deletion anomaly**: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Will 2 smaller tables be better?
Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - \(\text{ssn} \rightarrow \text{did}, \, \text{did} \rightarrow \text{lot} \) implies \(\text{ssn} \rightarrow \text{lot} \)

- An FD \(f \) is **implied by** a set of FDs \(F \), if \(f \) holds for every reln instance that satisfies all FDs in \(F \).
 - \(F^+ = \text{Closure of } F \) is the set of all FDs that are implied by \(F \).

- Armstrong’s Axioms (\(X, \, Y, \, Z \) are sets of attributes):
 - **Reflexivity:** If \(X \subseteq Y \), then \(Y \rightarrow X \)
 - **Augmentation:** If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - **Transitivity:** If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from AA):
 - **Union**: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - **Decomposition**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

- These are *sound* and *complete* inference rules for FDs!
 - Soundness: when applied to a set F of FDs, the axioms generate only FDs in F^+.
 - Completeness: repeated application of these axioms will generate all FDs in F^+.
Reasoning About FDs (Contd.)

- Computing the closure \(F^+ \) can be expensive:
 - Compute for all FD’s.
 - Size of closure is exponential in number of attrs!

- Typically, we just want to check if a given FD \(X \rightarrow Y \) is in \(F^+ \). An efficient check:
 - Compute attribute closure of \(X \) (denoted \(X^+ \)) w.r.t. \(F \), i.e., the largest attribute set \(A \) such that \(X \rightarrow A \) is in \(F^+ \).
 - Check if \(Y \subseteq X^+ \).
Attribute Closure

- Simple algorithm for *attribute closure* X^+:
 - DO if there is $U \rightarrow V$ in F s.t. $U \subseteq X^+$,
 then $X^+ = X^+ \cup V$
 UNTIL no change

- Check if *a given* FD $X \rightarrow Y$ is in F^+:
 - Simply check if $Y \subseteq X^+$.

- Does $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D \rightarrow E\}$ imply $A \rightarrow E$?
 - That is, is $A \rightarrow E$ in the closure F^+?
 - Equivalently, is E in A^+?
Normal Forms

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- **Normal forms**: If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain redundancy related problems are avoided/minimized.
- **Role of FDs in detecting redundancy:**
 - Consider a relation R with 3 attributes, ABC.
 - *No FDs hold*: There is no redundancy here.
 - *Given A → B*: Several tuples could have the same A value, and if so, they’ll all have the same B value!
Boyce-Codd Normal Form (BCNF)

- Rewrite every FD in the form of $X \rightarrow A$ (X is a set of attributes, A is a single attribute) using the decomposition rule.

- Reln R with FDs F is in BCNF if $\forall X \rightarrow A$ in F^+:
 - $A \in X$ (called a trivial FD), or
 - X is a superkey (i.e., contains a key) for R.
Boyce-Codd Normal Form (contd.)

- R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
- Can we infer the value marked by ‘?’?
 - Is the relation in BCNF?
 - If a reln is in BCNF, every field of every tuple records a piece of information that can’t be inferred (using only FD’s) from values in other fields.

- **BCNF ensures that no redundancy can be detected using FDs!**
Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if \(\forall X \rightarrow A \) in \(F^+ \):
 - \(A \in X \) (called a *trivial* FD), or
 - \(X \) is a *superkey* for R, or
 - \(A \) is part of some *key* for R. (*Minimality* of a key is crucial in the third condition!)

- If R is in BCNF, obviously in 3NF.
Third Normal Form (contd.)

- If R is in 3NF, *some redundancy is possible!*
 - Reserves\{Sailor, Boat, Date, Credit_card\} with S \(\rightarrow\) C, C \(\rightarrow\) S
 - It is in 3NF, because keys are SBD and CBD.
 - But for each reservation of sailor S, same (S, C) is stored.

- Why 3NF?
 - *Lossless-join, dependency-preserving* decomposition of R into *3NF relations* is always possible.
 - This is not true for BCNF!
Decomposition of a Relation Scheme

- A decomposition of R replaces R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R, and
 - Every attribute of R appears as an attribute of at least one new relation.

- Store instances of the relation schemas produced by the decomposition, instead of instances of R.
Example Decomposition

- Decompositions should be used only when needed.
 - Hourly_Emps (SNLRWH) has FDs $S \rightarrow \text{SNLRWH}$ and $R \rightarrow W$.
 - $R \rightarrow W$ causes violation of 3NF; W values repeatedly associated with R values.
 - A way to fix this is to create a relation RW to store these associations, and to remove W from the main schema:
 - i.e., decompose SNLRWH into SNLRH and RW.
- Any potential problems with storing SNLRH and RW instead of SNLRWH?
Problems with Decompositions

- Three potential problems to consider:
 - Some queries become more expensive.
 - e.g., How much did sailor Joe earn? (salary = W*H)
 - Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Fortunately, not in the SNLRWH example.
 - Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLRWH example.

- Tradeoff: Must consider these issues vs. redundancy.
Lossless Join Decompositions

- Decomposition of R into R1 and R2 is lossless-join w.r.t. a set of FDs F if ∀ instance r that satisfies F:
 - $\pi_{R1}(r) \bowtie \pi_{R2}(r) = r$

- It is always true that $r \subseteq \pi_{R1}(r) \bowtie \pi_{R2}(r)$
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.

- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2).)
More on Lossless Join

- Decomposition of R into R_1 and R_2 is lossless-join wrt F iff the closure of F contains:
 - $R_1 \cap R_2 \rightarrow R_1$, or
 - $R_1 \cap R_2 \rightarrow R_2$
 - i.e. intersection of R_1, R_2 is a (super) key of one of them.

- In particular, if $U \rightarrow V$ holds over R, the decomposition of R into UV and $R - V$ is lossless-join.
Dependency Preserving Decomposition

- Consider Contracts(Contractid, Supplierid, Projectid, Deptid, Partid, Qty, Value), denoted by CSJDPQV.

- Functional dependencies:
 - C is key.
 - JP \rightarrow C: a project purchases a given part using a single contract.
 - SD \rightarrow P: a department purchases at most one part from a supplier.

- Lossless-join BCNF decomposition: CSJDQV, SDP
 - Problem: Checking JP \rightarrow C requires a join!
Dependency Preserving Decomposition

- Dependency preserving decomposition:
 - If R is decomposed into R1 and R2 and we enforce the FDs that hold on R1 and R2 respectively, all FDs that were given to hold on R must also hold. *(Avoids Problem (3).)*

- Projection of set of FDs F:
 - If R is decomposed into R1, ..., projection of F onto R1 (denoted F_{R1}) is the set of FDs $U \rightarrow V$ such that (i) U, V are both in R1 and (ii) $U \rightarrow V$ is in closure F^+.
 - $F_{R1} \equiv F^+_{R1}$
Dependency Preserving Decompositions (Contd.)

- Formally, decomposition of R into R1 and R2 is dependency preserving if \((F_{R1} \cup F_{R2})^+ = F^+\)

- Important to consider \(F^+\) (not \(F!\)) in this definition:
 - ABC, \(A \to B, B \to C, C \to A\), decomposed into AB and BC.
 - Is this dependency preserving? Is \(C \to A\) preserved?

- Dependency preserving does not imply lossless join:
 - ABC, \(A \to B\), decomposed into AB and BC.
 - And vice-versa! (Example?)
Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into $R_1 = R - Y$ and $R_2 = XY$.
 - For each R_i, compute F_{R_i} and check if it is in BCNF.
 - If not, pick a FD violating BCNF and keep composing R_i.
 - Repeated application of this idea gives us a \textit{lossless join} decomposition into \textit{BCNF} relations, and is guaranteed to terminate.
Decomposition into BCNF

- Contracts(CSJDPQV), key C, JP → C, SD → P, J → S.
 2. Normal form. Not BCNF, SD → P and J → S violate BCNF.
 3. Decomposition. To deal with SD → P, decompose into SDP, CSJDQV.
 - SDP is in BCNF. But CSJDQV is not because:
 1. Projection of FDs and keys. Projection of FDs: keys C and SDJ, J → S.
 3. Decomposition. For J → S, decompose CSJDQV into JS and CJDQV.
 - JS is in BCNF. So is CJDQV.
- If several FDs violate BCNF, the order in which we ``deal with’’ them could lead to very different sets of relations!
BCNF and Dependency Preservation

- In general, there may not be a dependency-preserving decomposition into BCNF.
 - Decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP \rightarrow C, SD \rightarrow P and J \rightarrow S).
 - However, it is a lossless join decomposition.
 - Adding JPC as a new relation gives a dependency preserving decomposition. But JPC tuples stored only for checking FD — Redundancy across relations!
 - If we also have J \rightarrow C, JPC is not in BCNF.
Decomposition into 3NF

- The algorithm for lossless join decomposition into BCNF can be used to obtain a lossless join decomposition into 3NF (typically, can stop earlier).

- Idea to ensure dependency preservation: If $X \rightarrow Y$ is not preserved, add relation XY.
 - Problem is that XY may violate 3NF!
 - Suppose $AB \rightarrow C$ is lost in decomposition. Add ABC to `preserve’ $AB \rightarrow C$. What if we also have $A \rightarrow B$?

- Refinement: Instead of the given set of FDs F, use a minimal cover for F (minimal FD set G s.t. $G^+ = F^+$).
Decomposition into 3NF

- Step 1: Given F of FDs, compute its minimal cover G (not required in this class).
- Step 2: Use G to create a lossless-join decomposition of R into R1, …, Rn.
- Step 3: Identify the dependencies in F+ that are not preserved. For each such FD X→A, add a new relation XA.
- This algorithm produces a lossless-join, dependency-preserving decomposition into 3NF.
Summary of Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.

- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.