
10

Deleting a Data Entry from a B+ Tree

 Start at root, find leaf L where entry belongs.
 Remove the entry.

 If L is at least half-full, done! 
 If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent 
node with same parent as L).

• If re-distribution fails, merge L and sibling.

 If merge occurred, must delete entry (pointing to L 
or sibling) from parent of L.

 Merge could propagate to root, decreasing height.



11

Current B+ Tree

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Delete 19*

Delete 20*



12

Example Tree After (Inserting 8*, 
Then) Deleting 19* and 20* ...

 Deleting 19* is easy.
 Deleting 20* is done with re-distribution. 

Notice how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*



13

        ... And Then Deleting 24*

 Must merge.
 Observe `toss’ of 

index entry (on right), 
and `pull down’ of 
index entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17



14

Example of Non-leaf Re-distribution

 Tree is shown below during deletion of 24*. 
 In contrast to previous example, can re-distribute 

entry from left child of root to right child.  

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*



15

After Re-distribution

 Intuitively, entries are re-distributed by `pushing 
through’ the splitting entry in the parent node.

 It suffices to re-distribute index entry with key 20; 
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22



16

Prefix Key Compression

 Important to increase fan-out.  (Why?)
 Key values in index entries only `direct traffic’; 

can often compress them.
 E.g., If we have adjacent index entries with search 

key values Dannon Yogurt, David Smith and 
Devarakonda Murthy, we can abbreviate David Smith 
to Dav.  (The other keys can be compressed too ...)

• Is this correct?  Not quite!  What if there is a data entry 
Davey Jones?  (Can only compress David Smith to Davi)

• In general, while compressing, must leave each index entry 
greater than every key value (in any subtree) to its left.

 Insert/delete must be suitably modified.



Prefix key compression

17

Daniel Lee David Smith Devarakonda

Dante Wu Darius Rex ... Davey Jones

Compress to ‘Dav’ or ‘Davi’



18

Bulk Loading of a B+ Tree
 If we have a large collection of records, and we 

want to create a B+ tree on some field, doing so 
by repeatedly inserting records is very slow.

 Bulk Loading can be done much more efficiently.
 Initialization:  Sort all data entries, insert pointer 

to first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root



19

Bulk Loading (Contd.)

 Index entries for leaf 
pages always 
entered into right-
most index page just 
above leaf level.  
When this fills up, it 
splits.  (Split may go 
up right-most path 
to the root.)

 Much faster than 
repeated inserts, 
especially when one 
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages 
not yet in B+ tree3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages 



20

Summary of Bulk Loading

 Option 1: multiple inserts.
 Slow.
 Does not give sequential storage of leaves.

 Option 2: Bulk Loading 
 Has advantages for concurrency control.
 Fewer I/Os during build.
 Leaves will be stored sequentially (and linked, of 

course).
 Can control “fill factor” on pages.



21

A Note on `Order’

 Order (d) concept replaced by physical space 
criterion in practice (`at least half-full’).
 Index pages can typically hold many more entries 

than leaf pages.
 Variable sized records and search keys mean different 

nodes will contain different numbers of entries.
 Even with fixed length fields, multiple records with 

the same search key value (duplicates) can lead to 
variable-sized data entries (if we use Alternative (3)).



22

Summary

 Tree-structured indexes are ideal for range-
searches, also good for equality searches.

 B+ tree is a dynamic structure.
 Inserts/deletes leave tree height-balanced; log F N cost.

 High fanout (F) means depth rarely more than 3 or 4.
 Almost always better than maintaining a sorted file.
 Typically, 67% occupancy on average.
 If data entries are data records, splits can change rids!



23

Summary (Contd.)

 Key compression increases fanout, reduces height.
 Bulk loading can be much faster than repeated 

inserts for creating a B+ tree on a large data set.
 Most widely used index in database management 

systems because of its versatility.  One of the most 
optimized components of a DBMS.


