
10

Deleting a Data Entry from a B+ Tree

 Start at root, find leaf L where entry belongs.
 Remove the entry.

 If L is at least half-full, done! 
 If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent 
node with same parent as L).

• If re-distribution fails, merge L and sibling.

 If merge occurred, must delete entry (pointing to L 
or sibling) from parent of L.

 Merge could propagate to root, decreasing height.



11

Current B+ Tree

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Delete 19*

Delete 20*



12

Example Tree After (Inserting 8*, 
Then) Deleting 19* and 20* ...

 Deleting 19* is easy.
 Deleting 20* is done with re-distribution. 

Notice how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*



13

        ... And Then Deleting 24*

 Must merge.
 Observe `toss’ of 

index entry (on right), 
and `pull down’ of 
index entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17



14

Example of Non-leaf Re-distribution

 Tree is shown below during deletion of 24*. 
 In contrast to previous example, can re-distribute 

entry from left child of root to right child.  

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*



15

After Re-distribution

 Intuitively, entries are re-distributed by `pushing 
through’ the splitting entry in the parent node.

 It suffices to re-distribute index entry with key 20; 
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22



16

Prefix Key Compression

 Important to increase fan-out.  (Why?)
 Key values in index entries only `direct traffic’; 

can often compress them.
 E.g., If we have adjacent index entries with search 

key values Dannon Yogurt, David Smith and 
Devarakonda Murthy, we can abbreviate David Smith 
to Dav.  (The other keys can be compressed too ...)

• Is this correct?  Not quite!  What if there is a data entry 
Davey Jones?  (Can only compress David Smith to Davi)

• In general, while compressing, must leave each index entry 
greater than every key value (in any subtree) to its left.

 Insert/delete must be suitably modified.



Prefix key compression

17

Daniel Lee David Smith Devarakonda

Dante Wu Darius Rex ... Davey Jones

Compress to ‘Dav’ or ‘Davi’



18

Bulk Loading of a B+ Tree
 If we have a large collection of records, and we 

want to create a B+ tree on some field, doing so 
by repeatedly inserting records is very slow.

 Bulk Loading can be done much more efficiently.
 Initialization:  Sort all data entries, insert pointer 

to first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root



19

Bulk Loading (Contd.)

 Index entries for leaf 
pages always 
entered into right-
most index page just 
above leaf level.  
When this fills up, it 
splits.  (Split may go 
up right-most path 
to the root.)

 Much faster than 
repeated inserts, 
especially when one 
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages 
not yet in B+ tree3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages 



20

Summary of Bulk Loading

 Option 1: multiple inserts.
 Slow.
 Does not give sequential storage of leaves.

 Option 2: Bulk Loading 
 Has advantages for concurrency control.
 Fewer I/Os during build.
 Leaves will be stored sequentially (and linked, of 

course).
 Can control “fill factor” on pages.



21

A Note on `Order’

 Order (d) concept replaced by physical space 
criterion in practice (`at least half-full’).
 Index pages can typically hold many more entries 

than leaf pages.
 Variable sized records and search keys mean different 

nodes will contain different numbers of entries.
 Even with fixed length fields, multiple records with 

the same search key value (duplicates) can lead to 
variable-sized data entries (if we use Alternative (3)).



22

Summary

 Tree-structured indexes are ideal for range-
searches, also good for equality searches.

 B+ tree is a dynamic structure.
 Inserts/deletes leave tree height-balanced; log F N cost.

 High fanout (F) means depth rarely more than 3 or 4.
 Almost always better than maintaining a sorted file.
 Typically, 67% occupancy on average.
 If data entries are data records, splits can change rids!



23

Summary (Contd.)

 Key compression increases fanout, reduces height.
 Bulk loading can be much faster than repeated 

inserts for creating a B+ tree on a large data set.
 Most widely used index in database management 

systems because of its versatility.  One of the most 
optimized components of a DBMS.


