Semistructured data and XML

CS 445
Fall 2008
Today’s lecture

• Semistructured data
 – History and motivation
• Querying XML data: XPath
• XML: syntax and typing
• Querying XML data: XQuery
Structure in data representation

• Relational data is highly structured
 – structure is defined by the schema
 – good for system design
 – good for precise query semantics / answers

• Structure can be limiting
 – authoring is constrained: schema-first
 – changes to structure not easy
 – querying constrained: must know schema
 – data exchange hard: integration of diff schema

Some reasons why more data is not in databases
Structured data - Databases

Semistructured Data

Unstructured Text - Documents

WWW
XML data

```
<data>
  <person id="o555">
    <name> Mary </name>
    <address>
      <street> Maple </street>
      <no> 345 </no>
      <city> Seattle </city>
    </address>
  </person>
  <person>
    <name> John </name>
    <address> Thailand </address>
    <phone> 23456 </phone>
  </person>
</data>
```
Need for loose structure

• Evolving, unknown, or irregular structure
• Integration of structured, but heterogeneous data sources
• Textual data with tags and links
• Combination of data models
XML is the confluence of many factors:

- The Web needed a more declarative format for data
- Documents needed a mechanism for extended tags
- Database people needed a more flexible interchange format
- It’s parsable even if we don’t know what it means!

Original expectation:

- The whole web would go to XML instead of HTML

Today’s reality:

- Not so… But XML is used all over “under the covers”
Why DB People Like XML

Can get data from all sorts of sources

- Allows us to touch data we don’t own!
- This was actually a huge change in the DB community

Blends schema and data into one format

- Unlike relational model, where we need schema first
- … But too little schema can be a drawback, too!
XML: Syntax
XML Syntax

- tags: book, title, author, …
- elements are nested
- empty element: <red></red> abbrv. <red/>
- an XML document: single root element

An XML document is well formed if it has matching tags
XML Syntax

<book price = “55” currency = “USD”>
 <title> Foundations of Databases </title>
 <author> Abiteboul </author>
 …
 <year> 1995 </year>
</book>

attributes are alternative ways to represent data
XML Syntax

oids and references in XML are just syntax
XML Semantics: a Tree!

Order matters !!!
XML Data

• XML is self-describing
• Schema elements become part of the data
 – Relational schema: persons(name,phone)
 – In XML <persons>, <name>, <phone> are part of the data, and are repeated many times
• Consequence: XML is much more flexible

Some real data:
http://www.cs.washington.edu/research/xmldatasets/
Relational Data as XML

<table>
<thead>
<tr>
<th>name</th>
<th>phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>3634</td>
</tr>
<tr>
<td>Sue</td>
<td>6343</td>
</tr>
<tr>
<td>Dick</td>
<td>6363</td>
</tr>
</tbody>
</table>

XML:

```xml
<person>
  <row>
    <name>John</name>
    <phone>3634</phone>
  </row>
  <row>
    <name>Sue</name>
    <phone>6343</phone>
  </row>
  <row>
    <name>Dick</name>
    <phone>6363</phone>
  </row>
</person>
```
XML is Semi-structured Data

• Missing attributes:

```
<person>   <name> John</name>
            <phone>1234</phone>
 </person>
<person>  <name>Joe</name>
</person>
```

← no phone!

• Could represent in a table with nulls

<table>
<thead>
<tr>
<th>name</th>
<th>phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>1234</td>
</tr>
<tr>
<td>Joe</td>
<td>-</td>
</tr>
</tbody>
</table>
XML is Semi-structured Data

• Repeated attributes

```xml
<person>
  <name> Mary </name>
  <phone> 2345 </phone>
  <phone> 3456 </phone>
</person>
```

← two phones!

• Impossible in tables:

<table>
<thead>
<tr>
<th>name</th>
<th>phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>2345</td>
</tr>
</tbody>
</table>
XML is Semi-structured Data

- Attributes with different types in different objects

```
<person>  <name>  <first> John </first>
    <last> Smith </last>
  </name>
  <phone>1234</phone>
</person>
```

- Nested collections (non 1NF)
- Heterogeneous collections:
 - `<db>` contains both `<book>`s and `<publisher>`s
Querying XML Data

• Querying XML has two components
 – Selecting data
 • pattern matching on structural & path properties
 • typical selection conditions
 – Construct output, or transform data
 • construct new elements
 • restructure
 • order
Querying XML Data

• XPath = simple navigation through the tree

• XQuery = the SQL of XML
 – next time

• XSLT = recursive traversal
 – will not discuss in class
Querying XML

How do you query a directed graph? a tree?

The standard approach used by many XML, semistructured-data, and object query languages:

• Define some sort of a template describing traversals from the root of the directed graph

• In XML, the basis of this template is called an XPath
XPath is widely used

- XML Schema uses simple XPaths in defining keys and uniqueness constraints
- XQuery
- XSLT
- XLink and XPointer, hyperlinks for XML
In its simplest form, an XPath is like a path in a file system:

/mypath/subpath/*/morepath

- The XPath returns a **node set** representing the XML nodes (and their subtrees) at the end of the path
- XPaths can have node tests at the end, returning only particular node types, e.g., `text()`, `element()`, `attribute()`
- XPath is fundamentally an ordered language: it can query in order-aware fashion, and it returns nodes in order
Sample Data for Queries

<bib>
 <book>
 <publisher> Addison-Wesley </publisher>
 <author> Serge Abiteboul </author>
 <author> Rick </author>
 <last-name> Hull </last-name>
 <author> Victor Vianu </author>
 <title> Foundations of Databases </title>
 <year> 1995 </year>
 </book>
 <book price="55">
 <publisher> Freeman </publisher>
 <author> Jeffrey D. Ullman </author>
 <title> Principles of Database and Knowledge Base Systems </title>
 <year> 1998 </year>
 </book>
</bib>
Data Model for XPath

The root

The root element

bib

book

book

publisher

author

Addison-Wesley

Serge Abiteboul
XPath

/bib/book/year

/bib/paper/year

//author

//author/*

/bib/book/@price

/bib/book/author[firstname]

/bib/book/author[firstname][address[../zip][city]]/lastname