In-class activities: Oct 16, 2017

Today’s activities include some exercises that you need to do on paper or your whiteboard, and some problems that you will work on using our databases. Work through these problems with your 3-person team and check your solutions with the other teams at your table.

Pacing:

In a flipped classroom, the activities give you some structure, but the objective is that everyone can adjust the pace according to their needs. That means that you are in charge of your pace. However, we urge you to maintain focus and efficiency through the activities to ensure that you don't fall behind.

Quiz:

As usual, there will be a short end-of-class quiz. As before, you should indicate your 3-person team on the quiz. We keep track of that based on table and laptop numbers. Note your table number, indicated on the whiteboard and monitor assigned to your table. There are two laptop numbers, one on yellow sticker and one on white sticker. Indicate both if possible, but at least one is necessary. If you cannot find these numbers, please talk to the instructors or TAs before you turn in your quiz.
Step 1: ER diagrams

Your friend is impressed by your skills in 345, and asks you to help her design a database to model doctors’ offices across the Pioneer Valley. She started the ER diagram below, which already contains all the entity sets, their attributes and relationships she wants you to consider. You need to finish the diagram and define a number of constraints to ensure that you model the semantics of an office as closely as possible.

Make sure that you do not impose additional constraints not defined by the model.

1. An office may be managed by at most one doctor. A doctor is uniquely identified by their badgeld, and may manage more than one office. Draw the necessary constraints to capture this requirement.

2. An office is identified by its address, and contains one or more exam rooms. An exam room can be identified by its room number and the office that it is in. Capture these constraints by adding to or modifying the diagram where necessary.

3. When a patient visits an office, they have a consultation with a doctor in an examination room. Each patient is uniquely identified by their SSN.
Step 2: ER to relational

Write the SQL DDL commands (CREATE TABLE statements) to convert the ER diagram below to a database schema. Assume all attributes are integers. Pay attention to the constraints you need to declare (primary keys and foreign keys). When you are done, check your solution with the other teams at your table.
Step 3: Understanding key constraints

The goal of this activity is to understand the differences among 3 types of constraints: primary keys, foreign keys, and unique constraints. Start postgres and connect to your practice database: \c practicedb. Create simple tables and add a few tuples as needed to test and answer the following:

For each type of constraint (PRIMARY KEY / FOREIGN KEY /UNIQUE):

1. Can the constraint be defined on a single attribute? Can the constraint be defined on multiple attributes?

2. Can you have multiple constraints of the same type on the same table? (e.g., two primary keys, or two unique constraints)

3. Can two tuples in the table have the same value for the constraint?

4. Can tuples take NULL values for the constraint?

5. Can constraints of the same or different types overlap? For example, can part of a foreign key be defined as unique? Can two foreign keys overlap? Can the same attribute have a foreign key constraint referencing multiple tables?

*** Team-to-table ***

Understanding join cardinality with foreign keys

Create the following two simple tables in your practice database and populate them with a few tuples:

CREATE TABLE T1 (a int PRIMARY KEY, b int);
CREATE TABLE T2 (c int PRIMARY KEY, d int NOT NULL REFERENCES T1(a));

Let's say that T1 has x tuples and T2 has y tuples. How many tuples are there in the result of each of the following queries?

SELECT * FROM T1, T2 WHERE a=d;
SELECT * FROM T1 LEFT OUTER JOIN T2 ON a=d;
SELECT * FROM T1 RIGHT OUTER JOIN T2 ON a=d;

Do you understand how the foreign key impacts the size of the result? Can you reason about the minimum and maximum result size for each of these queries under any random, valid data instance where T1 has x tuples and T2 has y tuples?
Step 4: Constraints

A customer’s database has the following tables:
- Product, listing product ids and names.
- Inventory, listing the quantity for each product.
- Supplier, listing the supplier id, name and address.
- Supplies, indicating which supplier (sid) supplies which product (pid).
- PurchaseOrder, indicating the quantity that is on order for each product.

You have the following CREATE TABLE statements, but they are incomplete.

```
CREATE TABLE Product (pid INT PRIMARY KEY, name VARCHAR(20))
CREATE TABLE Inventory (pid INT PRIMARY KEY, quantity INT)
CREATE TABLE Supplier (sid INT PRIMARY KEY, name VARCHAR(20), address VARCHAR(50))
CREATE TABLE Supplies (sid INT, pid INT, PRIMARY KEY (sid, pid))
CREATE TABLE PurchaseOrder (pid INT, quantity INT)
```

Make the appropriate modifications to the statements above to enforce the following constraints:

1. Indicate all the appropriate foreign keys. For example, ensure that a purchase order refers to a product that exists in the Product table.

2. Ensure that the value of the quantity attribute from table Inventory is always greater than or equal to 0.

3. Whenever someone deletes a tuple in Supplier, any tuple in Supplies that referred to it should also be deleted.